Exemple #1
0
def try_caltra_ridge_rev(k=0):

    # Create a mapping from datetime objects to filenames
    basetime = datetime.datetime(2016, 9, 30, 12)
    basetime_str = basetime.strftime('%Y%m%d_%H')
    datadir = '/export/cloud/NCASweather/ben/nawdex/mi-ar482/{}/'.format(
        basetime_str)
    timestep = datetime.timedelta(hours=6)

    hoursafterinit = [42, 72, 96, 96]
    hoursuntil = [156, 156, 156, 156]

    times = [
        basetime + timestep * i
        for i in range(hoursafterinit[k] / 6, hoursuntil[k] / 6 + 1)
    ]
    print times[0]
    #creates mapping from selected outflow time until selected end time

    mapping = {}
    for t in times:
        leadtimehr = np.int((t - basetime).total_seconds()) / 3600
        fn = 'prodm_op_gl-mn_{0}_d{1:03d}_thgrid.pp'.\
            format(basetime_str, 12 * (leadtimehr / 12))
        mapping[t] = datadir + fn

    if k != 3:
        trainp_th = np.load(
            '/glusterfs/msc/users_2018/bn826011/NAWDEX/IOP67ridge/' +
            times[0].strftime("%m%d_%H") + '.npy')
        #trajectory input on theta levels
    else:
        trainp_th = np.load(
            '/glusterfs/msc/users_2018/bn826011/NAWDEX/IOP67ridge/' +
            times[0].strftime("%m%d_%H") + '_ridge2.npy')

    levels = ('air_potential_temperature',
              [trainp_th[0, 2] + 5 * i for i in range(3)])
    # three isentropic levels including that of the first data point

    print levels

    tracers = [
        'altitude', 'x_wind', 'y_wind', 'upward_air_velocity', 'air_pressure'
    ]
    #need these for circulation integrals

    traout = caltra.caltra(trainp_th,
                           mapping,
                           fbflag=1,
                           nsubs=12,
                           tracers=tracers,
                           levels=levels)
    # 12 steps between files = 30 mins apart

    traout.save(
        '/glusterfs/msc/users_2018/bn826011/NAWDEX/IOP67ridge/{}_TrajectoryEnsemble_forward'
        .format(basetime_str) + str(k + 1))

    return traout
Exemple #2
0
def inflow_caltra(k=0,
                  levs=3,
                  hoursafterinit=[42, 36, 42, 24],
                  folder='IOP3/T42',
                  strapp=''):

    # Create a mapping from datetime objects to filenames
    basetime = [
        datetime.datetime(2016, 9, 22, 12),
        datetime.datetime(2016, 9, 26, 12),
        datetime.datetime(2016, 9, 30, 12),
        datetime.datetime(2016, 10, 03, 12)
    ]
    basetime_str = basetime[k].strftime('%Y%m%d_%H')
    #datadir = '/export/cloud/migrated-NCASweather/ben/nawdex/mi-ar482/{}/'.format(basetime_str)
    datadir = '/storage/silver/NCAS-Weather/ben/nawdex/mi-ar482/{}/'.format(
        basetime_str)
    timestep = datetime.timedelta(hours=6)

    times = [
        basetime[k] + timestep * i for i in range(hoursafterinit[k] / 6 + 1)
    ]
    print times[-1]
    #creates mapping up to and including selected outflow time

    mapping = {}
    for t in times:
        leadtimehr = np.int((t - basetime[k]).total_seconds()) / 3600
        fn = [datadir + 'prodm_op_gl-mn_{0}_d{1:03d}_thgrid.pp'.\
            format(basetime_str, 12 * (leadtimehr / 12)),
              datadir + 'prodm_op_gl-mn_{0}_c{1:03d}.pp'.\
            format(basetime_str, 6 * (leadtimehr / 6))] # new addition of c to mapping
        mapping[t] = fn  #datadir + fn

    #trainp_th = np.load('/glusterfs/msc/users_2018/bn826011/NAWDEX/Final/' + folder + '/inflow/' + basetime_str + strapp + 'initial_grid.npy')
    trainp_th = np.load(
        '/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder +
        '/inflow/' + basetime_str + strapp + 'initial_grid.npy')
    #trajectory input on theta levels

    tracers = [
        'air_potential_temperature', 'air_pressure', 'derived_pv', 'dPV_tot',
        'adv_only_PV', 'dPV_LW', 'dPV_mic', 'dPV_conv', 'dPV_adv', 'dPV_SW',
        'dPV_ph1', 'dPV_bl', 'dPV_cld', 'dPV_mass'
    ]  # 'specific_humidity', 'mass_fraction_of_cloud_ice_in_air', 'mass_fraction_of_cloud_liquid_water_in_air', 'derived_pv']
    #need these for circulation integrals

    traout = caltra.caltra(trainp_th,
                           mapping,
                           fbflag=-1,
                           nsubs=12,
                           tracers=tracers)
    # 12 steps between files = 30 mins apart

    traout.save('/storage/silver/scenario/bn826011/WCB_outflow/Final/' +
                folder +
                '/inflow/{}_3DTrajectoryEnsemble_dPV'.format(basetime_str) +
                strapp)

    return traout
Exemple #3
0
def backward_isentropic_trajectories_from_outflow():
    """Calculate isentropic backward trajectories around boundary of the outflow
    """

    traout = caltra.caltra(trainp, mapping, fbflag=-1, tracers=tracers,
                           levels=('air_potential_temperature', [320]))
    return
def try_caltra_rev(k = 0, levs = 3, hoursafterinit = [42, 36, 42, 24], hoursuntil = [90, 78, 156, 84], filtersize = 30, folder = 'IOP3/contours_2019', strapp = '', theta_max = 315):
    
    # Create a mapping from datetime objects to filenames
    basetime = [datetime.datetime(2016, 9, 22, 12), datetime.datetime(2016, 9, 26, 12), datetime.datetime(2016, 9, 30, 12), datetime.datetime(2016, 10, 03, 12)]
    basetime_str = basetime[k].strftime('%Y%m%d_%H')
    datadir = '/export/cloud/migrated-NCASweather/ben/nawdex/mi-ar482/{}/'.format(basetime_str)
    timestep = datetime.timedelta(hours=6)
    
    #hoursafterinit = [42, 42, 42, 72, 96]#42
    #hoursuntil = [78, 78, 78, 108]
    
    times = [basetime[k] + timestep * i for i in range(hoursafterinit[k]/6, hoursuntil[k]/6 + 1)]
    print times[0]
    #creates mapping from selected outflow time until selected end time 
    print 7
    mapping = {}
    for t in times:
        leadtimehr = np.int((t - basetime[k]).total_seconds()) / 3600
        fn = 'prodm_op_gl-mn_{0}_d{1:03d}_thgrid.pp'.\
            format(basetime_str, 12 * (leadtimehr / 12))
        mapping[t] = datadir + fn
        
    #trainp_th = np.load('outflow/T42_mfs' + str(filtersize) + '/' + times[0].strftime("%m%d_%H") + '.npy')
    #trainp_th = np.load('/glusterfs/msc/users_2018/bn826011/NAWDEX/Final/' + folder + '/' + times[0].strftime("%m%d_%H") + strapp + '.npy')
    trainp_th = np.load('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + '/' + times[0].strftime("%m%d_%H") + strapp + '.npy')
    #trainp_th = np.load('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + 2)
    #trajectory input on theta levels
    
    if len(trainp_th[0]) >= 3:
        # the input file has already been given theta levels
        levels = ('air_potential_temperature', [trainp_th[0, 2] + 5*i for i in range(levs)])
        # three isentropic levels including that of the first data point
    else:
        levels = ('air_potential_temperature', [theta_max - 5*i for i in range(levs)])
        trainp_th_new = np.concatenate([trainp_th, np.transpose([theta_max*np.ones_like(trainp_th[:, 0])])], axis = 1)
        for i in range(1, levs):
            trainp_th_new = np.concatenate([trainp_th_new, np.concatenate([trainp_th, np.transpose([(theta_max - 5*i)*np.ones_like(trainp_th[:, 0])])], axis = 1)], axis = 0)
        trainp_th = trainp_th_new
    
    print levels
    
    tracers = ['altitude', 'x_wind', 'y_wind', 'upward_air_velocity', 'air_pressure']
    #need these for circulation integrals
    
    traout = caltra.caltra(trainp_th, mapping, fbflag=1, nsubs = 12, tracers = tracers, levels=levels)
    # 12 steps between files = 30 mins apart 
    
    #np.save('outflow/{}_trajectories.npy'.format(basetime_str), traout)
    #saving it as a numpy file removes functionality oof trajectory ensemble class, making it effectively useless, yay!
        
    #traout.save('outflow/T42_mfs' + str(filtersize) + '/{}_TrajectoryEnsemble_forward'.format(basetime_str))
    #traout.save('/glusterfs/msc/users_2018/bn826011/NAWDEX/Final/' + folder + '/{}_TrajectoryEnsemble_forward'.format(basetime_str) + strapp)
    traout.save('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + '/{}_TrajectoryEnsemble_forward'.format(basetime_str) + strapp)
    
    return traout
def main(forecast, filename):
    # Get the input positions
    cubes = forecast.set_lead_time(hours=36)
    trainp = get_startpoints(cubes)

    # Calculate trajectories
    mapping = forecast._loader._files
    traout = caltra.caltra(trainp, mapping, fbflag=-1, tracers=tracers)

    # Save the trajectories
    traout.to_pickle(filename)
def try_caltra(k = 0, levs = 3, hoursafterinit = [42, 36, 42, 24], filtersize = 30, folder = 'IOP3/T42', strapp = ''):
    
    # Create a mapping from datetime objects to filenames
    basetime = [datetime.datetime(2016, 9, 22, 12), datetime.datetime(2016, 9, 26, 12), datetime.datetime(2016, 9, 30, 12), datetime.datetime(2016, 10, 03, 12)]
    basetime_str = basetime[k].strftime('%Y%m%d_%H')
    #datadir = '/export/cloud/migrated-NCASweather/ben/nawdex/mi-ar482/{}/'.format(basetime_str)
    datadir = '/storage/silver/NCAS-Weather/ben/nawdex/mi-ar482/{}/'.format(basetime_str)
    timestep = datetime.timedelta(hours=6)
    
    #hoursafterinit = [42, 42, 42, 72, 96]#42
    
    times = [basetime[k] + timestep * i for i in range(hoursafterinit[k]/6 + 1)]
    print times[-1]
    #creates mapping up to and including selected outflow time    
        
    mapping = {}
    for t in times:
        leadtimehr = np.int((t - basetime[k]).total_seconds()) / 3600
        fn = [datadir + 'prodm_op_gl-mn_{0}_d{1:03d}_thgrid.pp'.\
            format(basetime_str, 12 * (leadtimehr / 12)),
              datadir + 'prodm_op_gl-mn_{0}_c{1:03d}.pp'.\
            format(basetime_str, 6 * (leadtimehr / 6))] # new addition of c to mapping
        mapping[t] = fn#datadir + fn
        
    #trainp_th = np.load('outflow/T42_mfs' + str(filtersize) + '/' + times[-1].strftime("%m%d_%H") + '.npy')
    #trainp_th = np.load('/glusterfs/msc/users_2018/bn826011/NAWDEX/Final/' + folder + '/' + times[-1].strftime("%m%d_%H") + strapp + '.npy')
    trainp_th = np.load('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + '/inflow/' + basetime_str + strapp + 'initial_grid_thlevs.npy')
    #trajectory input on theta levels
    
    levels = ('air_potential_temperature', [trainp_th[0, 2] + 5*i for i in range(levs)])
    # three isentropic levels including that of the first data point
    #levels = ('air_potential_temperature', [325])
    
    print levels
    
    tracers = ['altitude', 'x_wind', 'y_wind', 'upward_air_velocity', 'air_pressure', 'derived_pv', 'dPV_tot', 'adv_only_PV', 'dPV_LW', 'dPV_mic', 'dPV_conv', 'dPV_adv', 'dPV_SW', 'dPV_ph1', 'dPV_bl', 'dPV_cld', 'dPV_mass']
    #need these for circulation integrals
    
    traout = caltra.caltra(trainp_th, mapping, fbflag=-1, nsubs = 12, tracers = tracers, levels=levels)
    # 12 steps between files = 30 mins apart 
    
    #np.save('outflow/{}_trajectories.npy'.format(basetime_str), traout)
    #saving it as a numpy file removes functionality oof trajectory ensemble class, making it effectively useless, yay!
        
    #traout.save('outflow/T42_mfs' + str(filtersize) + '/{}_TrajectoryEnsemble_backward'.format(basetime_str))
    #traout.save('/glusterfs/msc/users_2018/bn826011/NAWDEX/Final/' + folder + '/{}_TrajectoryEnsemble_backward'.format(basetime_str) + strapp)
    #traout.save('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + '/{}_TrajectoryEnsemble_backward'.format(basetime_str) + strapp)
    traout.save('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + '/inflow/{}_2DTrajectoryEnsemble_dPV'.format(basetime_str) + strapp)
     
    return traout
Exemple #7
0
def forward_trajectories(forecast):
    """Calculate 48 hour forward trajectories from low levels

    Start trajectories from all points below 2km
    """
    cubes = forecast.set_lead_time(hours=48)

    z = convert.calc('altitude', cubes)
    theta = convert.calc('air_potential_temperature', cubes)
    theta_adv = convert.calc('advection_only_theta', cubes)
    pv = convert.calc('ertel_potential_vorticity', cubes)
    lon, lat = grid.true_coords(pv)
    glon, glat = grid.get_xy_grids(pv)
    time = grid.get_datetime(pv)
    nz, ny, nx = pv.shape

    eqlats = rossby_waves.eqlats
    cs = iris.Constraint(time=time)
    with iris.FUTURE.context(cell_datetime_objects=True):
        eqlat = eqlats.extract(cs)[0]

    # Interpolate to the theta and PV surfaces
    eqlat = interpolate.main(eqlat, ertel_potential_vorticity=2)
    eqlat = interpolate.main(eqlat,
                             potential_temperature=theta.data.flatten())

    # Define the start points
    trainp = []
    for k in range(nz):
        print(k)
        for j in range(ny):
            for i in range(nx):
                if (theta_adv.data[k, j, i] < 300 < theta.data[k, j, i] and
                        pv.data[k, j, i] < 2 and
                        lat[j, i] > eqlat.data[k * ny * nx + j * nx + i]):
                    trainp.append([glon[j, i], glat[j, i], z.data[k, j, i]])
    trainp = np.array(trainp)

    plot.pcolormesh(pv[33], vmin=0, vmax=10, cmap='cubehelix_r', pv=pv[33])
    plt.scatter(trainp[:, 0], trainp[:, 1])
    plt.show()

    # Calculate the trajectories
    tracers = ['air_potential_temperature', 'air_pressure']
    traout = caltra.caltra(trainp, mapping, fbflag=-1, tracers=tracers)

    # Save the trajectories
    traout.save(datadir + 'backward_trajectories.pkl')