exttrigInjections = [startExttrig, stopExttrig] # check the values given if startExttrig < 1: print >> sys.stderr, "exttrig-inj-start must be larger than 0." sys.exit(1) if startExttrig > stopExttrig: print >> sys.stderr, "exttrig-inj-stop must be larger than "\ "exttrig-inj-start." sys.exit(1) else: exttrigInjections = [0, 0] doSlides = cp.has_option('input', 'do-long-slides') tmplt_job = inspiral.TmpltBankJob(cp, opts.dax) # spinchecker spincheck_job = inspiral.PTFSpinCheckerJob(cp, opts.dax) # inspiral: insp_jobs = inspiral.PTFInspiralJob(cp, opts.dax) if doExtTrig: insp_jobs.add_opt('analyze-inj-segs-only', '') for ifo1 in ifo_list: if do[ifo1]: ifo1 = ifo1.upper() spincheck_job.add_opt(ifo1.lower() + '-data', '') insp_jobs.add_opt(ifo1.lower() + '-data', '')
if not cp.has_option('segments', ifo.lower() + '-analyze'): continue # decide if we need to segment the data available_segments = get_valid_segments( cp.get('segfind', 'segment-url'), cp.get('framefind', 'base-dir'), ifo, cp.get('segments', ifo.lower() + '-analyze'), gps_start_time, gps_end_time) if not available_segments: print("No available segments for %s, skipping" % ifo) continue # create the Condor jobs that will be used in the DAG df_job = pipeline.LSCDataFindJob('cache', 'logs', cp) tmplt_job = inspiral.TmpltBankJob(cp) # Based on S6A results ttrigscan clustering has # been replaced with 30-ms window clustering # ts_job = TrigscanJob(cp) si_job_coarse = SiClusterJobCoarse(cp) si_job_fine = SiClusterJobFine(cp) cp_job = FilesystemJob('cp') # Add ifo-specific template config if cp.has_section(ifo.lower() + '-tmpltbank'): tmplt_job.add_ini_opts(cp, ifo.lower() + '-tmpltbank') # Create a job to split the template into parallelization pieces split_job = inspiral.SplitBankJob(cp)
try: frame_types.append(cp.get('input','virgo-type')) except: pass try: frame_types.append(cp.get('input','geo-type')) except: pass frame_types = [t for t in frame_types if t] except: lsync_file = None df_job = pipeline.LSCDataFindJob( 'cache','logs',cp,opts.dax,lsync_file,'|'.join(frame_types)) df_job.set_sub_file( basename + '.datafind'+ subsuffix ) # tmpltbank: tmplt_jobs = {} for ifo in ifo_list: tmplt_jobs[ifo] = inspiral.TmpltBankJob(cp,opts.dax) tmplt_jobs[ifo].set_sub_file( basename + '.tmpltbank_' + ifo + subsuffix ) # inspinj: inspinj_job = inspiral.InspInjJob(cp) inspinj_job.set_sub_file( basename + '.inspinj' + subsuffix ) if opts.noop_inspinj: inspinj_job.add_condor_cmd("noop_job", "true") # inspiral: insp_jobs = {} for ifo in ifo_list: insp_jobs[ifo] = inspiral.InspiralJob(cp,opts.dax) insp_jobs[ifo].set_sub_file( basename + '.inspiral_' + ifo + subsuffix )