logger.info(' downselecting to the %d most recent cleans' % max_num_cln) cleans = cleans[-max_num_cln:] output = idq.combine_separated_output(these_columns, [glitches, cleans]) ### define weights over time output['weight'] = calibration.weights(output['GPS'], weight_type="uniform") if not opts.dont_cluster: cluster_dat = idq.dat(output_dir, classifier, ifo, "clustered", usertag, gpsstart - lookback, lookback + stride) ### write clustered dat file logger.info(' writing %s' % cluster_dat) idq.output_to_datfile(output, cluster_dat) else: cluster_dat = idq.dat(output_dir, classifier, ifo, "unclustered", usertag, gpsstart - lookback, lookback + stride) logger.info(' writing %s' % cluster_dat) idq.output_to_datfile(output, cluster_dat) ### compute rcg from output r, c, g = idq.dat_to_rcg(output) logger.info(' N_gch = %d , N_cln = %d' % (g[-1], c[-1])) ### dump into roc file roc = idq.roc(output_dir, classifier, ifo, usertag, gpsstart - lookback, lookback + stride)
raise ValueError( "combiner=%s joint_p(c)=%s not understood" % (combiner, combinersD[combiner]['joint_p(c)'])) ### compute combined statistics logger.info(' computing approximation to joint likelihood ratio') L_joint = pofg_joint / pofc_joint ### compute likelihood r_joint = L_joint / (1 + L_joint) ### compute rank ### put them into output output['rank'] = r_joint output['Likelihood'] = L_joint ### write datfile logger.info(' writing %s' % dat) idq.output_to_datfile(output, dat) ### convert datfiles to xml tables logger.info(' Begin: converting %s dat file into xml files' % combiner) logger.info(' converting %s to xml tables' % dat) ### read dafile -> xml docs (gchxml_doc, clnxml_doc) = idq.datfile2xmldocs(dat, ifo, fapmap, Lmap=False, Effmap=effmap, flavor=flavor, gwchan=gwchannel,
cleans.sort(key=lambda l: l[these_columns['GPS']]) if len(glitches) > max_num_gch: logger.info(' downselecting to the %d most recent glitches'%max_num_gch) glitches = glitches[-max_num_gch:] if len(cleans) > max_num_cln: logger.info(' downselecting to the %d most recent cleans'%max_num_cln) cleans = cleans[-max_num_cln:] output = idq.combine_separated_output( these_columns, [glitches, cleans] ) ### define weights over time output['weight'] = calibration.weights( output['GPS'], weight_type="uniform" ) if not opts.dont_cluster: cluster_dat = idq.dat(output_dir, classifier, ifo, "clustered", usertag, gpsstart-lookback, lookback+stride) ### write clustered dat file logger.info(' writing %s'%cluster_dat) idq.output_to_datfile( output, cluster_dat ) else: cluster_dat = idq.dat(output_dir, classifier, ifo, "unclustered", usertag, gpsstart-lookback, lookback+stride) logger.info(' writing %s'%cluster_dat) idq.output_to_datfile( output, cluster_dat ) ### compute rcg from output r, c, g = idq.dat_to_rcg( output ) logger.info(' N_gch = %d , N_cln = %d'%(g[-1], c[-1])) ### dump into roc file roc = idq.roc(output_dir, classifier, ifo, usertag, gpsstart-lookback, lookback+stride) logger.info(' writting %s'%roc) idq.rcg_to_file(roc, r, c, g)
pofc_joint = numpy.prod( pofc_joint, axis=0 ) else: raise ValueError("combiner=%s joint_p(c)=%s not understood"%(combiner, combinersD[combiner]['joint_p(c)'])) ### compute combined statistics logger.info(' computing approximation to joint likelihood ratio') L_joint = pofg_joint / pofc_joint ### compute likelihood r_joint = L_joint / ( 1 + L_joint ) ### compute rank ### put them into output output['rank'] = r_joint output['Likelihood'] = L_joint ### write datfile logger.info(' writing %s'%dat) idq.output_to_datfile( output, dat ) ### convert datfiles to xml tables logger.info(' Begin: converting %s dat file into xml files'%combiner) logger.info(' converting %s to xml tables' % dat) ### read dafile -> xml docs (gchxml_doc, clnxml_doc) = idq.datfile2xmldocs(dat, ifo, fapmap, Lmap=False, Effmap=effmap, flavor=flavor, gwchan=gwchannel, gwtrigs=gw_trig, prog=__prog__, options=opts.__dict__, version=__version__ ) ### write documents logger.info(' --> writing ' + gchxml) idq.ligolw_utils.write_filename(gchxml_doc, gchxml, gz=gchxml.endswith('.gz')) logger.info(' --> writing ' + clnxml) idq.ligolw_utils.write_filename(clnxml_doc, clnxml, gz=clnxml.endswith('.gz'))