def process(fitsfilename):
    sky_map, metadata = fits.read_sky_map(fitsfilename, nest=None)

    coinc_event_id = metadata['objid']
    try:
        runtime = metadata['runtime']
    except KeyError:
        runtime = float('nan')

    simulation_id, true_ra, true_dec, far, snr = db.execute("""
        SELECT DISTINCT sim.simulation_id AS simulation_id, sim.longitude AS ra, sim.latitude AS dec,
        ci.combined_far AS far, ci.snr AS snr
        FROM coinc_event_map AS cem1 INNER JOIN coinc_event_map AS cem2
        ON (cem1.coinc_event_id = cem2.coinc_event_id)
        INNER JOIN sim_inspiral AS sim ON (cem1.event_id = sim.simulation_id)
        INNER JOIN coinc_inspiral AS ci ON (cem2.event_id = ci.coinc_event_id)
        WHERE cem1.table_name = 'sim_inspiral'
        AND cem2.table_name = 'coinc_event' AND cem2.event_id = ?""",
        (coinc_event_id,)).fetchone()
    searched_area, searched_prob, offset, searched_modes, contour_areas, area_probs, contour_modes = postprocess.find_injection(
        sky_map, true_ra, true_dec, contours=[0.01 * p for p in contours],
        areas=areas, modes=modes, nest=metadata['nest'])

    if snr is None:
        snr = float('nan')
    if far is None:
        far = float('nan')

    ret = [coinc_event_id, simulation_id, far, snr, searched_area, searched_prob, offset, runtime] + contour_areas + area_probs
    if modes:
        ret += [searched_modes] + contour_modes
    return ret
Exemple #2
0
def process(fitsfilename):
    sky_map, metadata = fits.read_sky_map(fitsfilename, nest=None)

    coinc_event_id = metadata['objid']
    try:
        runtime = metadata['runtime']
    except KeyError:
        runtime = float('nan')

    simulation_id, true_ra, true_dec, far, snr = db.execute("""
        SELECT DISTINCT sim.simulation_id AS simulation_id, sim.longitude AS ra, sim.latitude AS dec,
        ci.combined_far AS far, ci.snr AS snr
        FROM coinc_event_map AS cem1 INNER JOIN coinc_event_map AS cem2
        ON (cem1.coinc_event_id = cem2.coinc_event_id)
        INNER JOIN sim_inspiral AS sim ON (cem1.event_id = sim.simulation_id)
        INNER JOIN coinc_inspiral AS ci ON (cem2.event_id = ci.coinc_event_id)
        WHERE cem1.table_name = 'sim_inspiral'
        AND cem2.table_name = 'coinc_event' AND cem2.event_id = ?""",
        (coinc_event_id,)).fetchone()
    searched_area, searched_prob, offset, searched_modes, contour_areas, area_probs, contour_modes = postprocess.find_injection(
        sky_map, true_ra, true_dec, contours=[0.01 * p for p in contours],
        areas=areas, modes=modes, nest=metadata['nest'])

    if snr is None:
        snr = float('nan')
    if far is None:
        far = float('nan')

    ret = [coinc_event_id, simulation_id, far, snr, searched_area, searched_prob, offset, runtime] + contour_areas + area_probs
    if modes:
        ret += [searched_modes] + contour_modes
    return ret
def process(fitsfilename):
    sky_map, metadata = fits.read_sky_map(fitsfilename, nest=None)

    coinc_event_id = metadata['objid']
    try:
        runtime = metadata['runtime']
    except KeyError:
        runtime = float('nan')

    row = db.execute("""
        SELECT DISTINCT sim.simulation_id AS simulation_id, sim.longitude AS ra, sim.latitude AS dec,
        ci.combined_far AS far, ci.snr AS snr
        FROM coinc_event_map AS cem1 INNER JOIN coinc_event_map AS cem2
        ON (cem1.coinc_event_id = cem2.coinc_event_id)
        INNER JOIN sim_inspiral AS sim ON (cem1.event_id = sim.simulation_id)
        INNER JOIN coinc_inspiral AS ci ON (cem2.event_id = ci.coinc_event_id)
        WHERE cem1.table_name = 'sim_inspiral'
        AND cem2.table_name = 'coinc_event' AND cem2.event_id = ?""",
        (coinc_event_id,)).fetchone()
    if row is None:
        raise ValueError(
            "No database record found for event '{0}' in '{1}'".format(
            coinc_event_id, command.sqlite_get_filename(db)))
    simulation_id, true_ra, true_dec, far, snr = row
    searched_area, searched_prob, offset, searched_modes, contour_areas, area_probs, contour_modes = postprocess.find_injection(
        sky_map, true_ra, true_dec, contours=[0.01 * p for p in contours],
        areas=areas, modes=modes, nest=metadata['nest'])

    if snr is None:
        snr = float('nan')
    if far is None:
        far = float('nan')
    distmean = metadata.get('distmean', float('nan'))
    diststd = metadata.get('diststd', float('nan'))

    ret = [coinc_event_id, simulation_id, far, snr, searched_area, searched_prob, offset, runtime, distmean, diststd] + contour_areas + area_probs
    if modes:
        ret += [searched_modes] + contour_modes
    return ret
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
import healpy as hp
import lal
from lalinference import fits
from lalinference import plot
from lalinference.bayestar import postprocess

fig = plt.figure(frameon=False)
ax = plt.axes(projection='mollweide' if opts.geo else 'astro hours mollweide')
ax.grid()

skymap, metadata = fits.read_sky_map(opts.input.name, nest=None)
nside = hp.npix2nside(len(skymap))

if opts.geo:
    dlon = -lal.GreenwichMeanSiderealTime(lal.LIGOTimeGPS(metadata['gps_time'])) % (2*np.pi)
else:
    dlon = 0

# Convert sky map from probability to probability per square degree.
probperdeg2 = skymap / hp.nside2pixarea(nside, degrees=True)

# Plot sky map.
vmax = probperdeg2.max()
plot.healpix_heatmap(
    probperdeg2, dlon=dlon, nest=metadata['nest'], vmin=0., vmax=vmax)
import json
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
import healpy as hp
import lal
from lalinference import fits
from lalinference import plot

fig = plt.figure(figsize=(opts.figure_width, opts.figure_height), frameon=False)
ax = plt.subplot(111,
    projection='mollweide' if opts.geo else 'astro mollweide')
ax.cla()
ax.grid()

skymap, metadata = fits.read_sky_map(infilename, nest=None)
nside = hp.npix2nside(len(skymap))

if opts.geo:
    dlon = -lal.GreenwichMeanSiderealTime(lal.LIGOTimeGPS(metadata['gps_time'])) % (2*np.pi)
else:
    dlon = 0

# Convert sky map from probability to probability per square degree.
probperdeg2 = skymap / hp.nside2pixarea(nside, degrees=True)

# Plot sky map.
vmax = probperdeg2.max()
plot.healpix_heatmap(
    probperdeg2, dlon=dlon, nest=metadata['nest'],
    vmin=0., vmax=vmax, cmap=plt.get_cmap(opts.colormap))
#
incl_sampler = mcsampler.cos_samp_vector # this is NOT dec_samp_vector, because the angular zero point is different!
sampler.add_parameter("inclination", pdf = incl_sampler, cdf_inv = None, left_limit = param_limits["inclination"][0], right_limit = param_limits["inclination"][1], prior_pdf = mcsampler.uniform_samp_theta, adaptive_sampling = not opts.no_adapt)

#
# Distance - luminosity distance to source in parsecs
# sampler: uniform distance over [dmin, dmax), adaptive sampling
#
dist_sampler = functools.partial(mcsampler.uniform_samp_vector, param_limits["distance"][0], param_limits["distance"][1])
sampler.add_parameter("distance", pdf = dist_sampler, cdf_inv = None, left_limit = param_limits["distance"][0], right_limit = param_limits["distance"][1], prior_pdf = numpy.vectorize(lambda x: x**2/(param_limits["distance"][1]**3/3. - param_limits["distance"][0]**3/3.)), adaptive_sampling = not opts.no_adapt)

if opts.skymap_file is not None:
    #
    # Right ascension and declination -- use a provided skymap
    #
    smap, _ = bfits.read_sky_map(opts.skymap_file)
    ss_sampler = mcsampler.HealPixSampler(smap)
    isotropic_bstar_sampler = numpy.vectorize(lambda dec, ra: 1.0/len(smap))

    # FIXME: Should the left and right limits be modified?
    sampler.add_parameter(("declination", "right_ascension"), \
        pdf = ss_sampler.pseudo_pdf, \
        cdf_inv = ss_sampler.pseudo_cdf_inverse, \
        left_limit = (param_limits["declination"][0], param_limits["right_ascension"][0]), \
        right_limit = (param_limits["declination"][1], param_limits["right_ascension"][1]), \
        prior_pdf = isotropic_bstar_sampler)

else:
    #
    # Right ascension - angle in radians from prime meridian plus hour angle
    # sampler: uniform in [0, 2pi), adaptive sampling
# Late imports
from matplotlib import pyplot as plt
from matplotlib import gridspec
from matplotlib import transforms
from lalinference import fits
from lalinference import marker
from lalinference.bayestar.distance import (
    principal_axes, volume_render, marginal_pdf)
import healpy as hp
import numpy as np
import scipy.stats

# Read input, determine input resolution.
progress.update(-1, 'Loading FITS file')
(prob, mu, sigma, norm), metadata = fits.read_sky_map(
    opts.input.name, distances=True)
npix = len(prob)
nside = hp.npix2nside(npix)

progress.update(-1, 'Preparing projection')

if opts.align_to is None:
    prob2, mu2, sigma2 = prob, mu, sigma
else:
    (prob2, mu2, sigma2, _), _ = fits.read_sky_map(
        opts.align_to.name, distances=True)
R = np.ascontiguousarray(principal_axes(prob2, mu2, sigma2))

if opts.chain:
    chain = np.recfromtxt(opts.chain, names=True)
    chain = np.dot(R.T, (hp.ang2vec(
    nargs="?",
    help="Input FITS file [default: stdin]",
)
opts = parser.parse_args()

# Late imports

from lalinference import fits
from lalinference.bayestar import postprocess
import healpy as hp
import numpy as np
import json


# Read input file
prob, _ = fits.read_sky_map(opts.input.name, nest=True)

# Resample if requested
if opts.nside is not None and opts.interpolate in ("nearest", "nested"):
    prob = hp.ud_grade(prob, opts.nside, order_in="NESTED", power=-2)
elif opts.nside is not None and opts.interpolate == "bilinear":
    prob = postprocess.smooth_ud_grade(prob, opts.nside, nest=True)
if opts.interpolate == "nested":
    prob = postprocess.interpolate_nested(prob, nest=True)

# Find credible levels
i = np.flipud(np.argsort(prob))
cumsum = np.cumsum(prob[i])
cls = np.empty_like(prob)
cls[i] = cumsum * 100
Exemple #9
0
                                 param_limits["distance"][1])
sampler.add_parameter(
    "distance",
    pdf=dist_sampler,
    cdf_inv=None,
    left_limit=param_limits["distance"][0],
    right_limit=param_limits["distance"][1],
    prior_pdf=numpy.vectorize(lambda x: x**2 / (param_limits["distance"][
        1]**3 / 3. - param_limits["distance"][0]**3 / 3.)),
    adaptive_sampling=not opts.no_adapt)

if opts.skymap_file is not None:
    #
    # Right ascension and declination -- use a provided skymap
    #
    smap, _ = bfits.read_sky_map(opts.skymap_file)
    ss_sampler = mcsampler.HealPixSampler(smap)
    isotropic_bstar_sampler = numpy.vectorize(lambda dec, ra: 1.0 / len(smap))

    # FIXME: Should the left and right limits be modified?
    sampler.add_parameter(("declination", "right_ascension"), \
        pdf = ss_sampler.pseudo_pdf, \
        cdf_inv = ss_sampler.pseudo_cdf_inverse, \
        left_limit = (param_limits["declination"][0], param_limits["right_ascension"][0]), \
        right_limit = (param_limits["declination"][1], param_limits["right_ascension"][1]), \
        prior_pdf = isotropic_bstar_sampler)

else:
    #
    # Right ascension - angle in radians from prime meridian plus hour angle
    # sampler: uniform in [0, 2pi), adaptive sampling
# Late imports
from matplotlib import pyplot as plt
from matplotlib import gridspec
from matplotlib import transforms
from lalinference import fits
from lalinference import marker
from lalinference.bayestar.distance import (
    principal_axes, volume_render_kernel, marginal_distribution)
import healpy as hp
import numpy as np
import scipy.stats

# Read input, determine input resolution.
progress.update(-1, 'Loading FITS file')
(prob, mu, sigma, norm), metadataa = fits.read_sky_map(
    opts.input.name, distances=True)
npix = len(prob)
nside = hp.npix2nside(npix)

progress.update(-1, 'Preparing projection')

R = np.ascontiguousarray(principal_axes(prob, mu, sigma))

if opts.chain:
    chain = np.recfromtxt(opts.chain, names=True)
    chain = np.dot(R.T, (hp.ang2vec(
        0.5 * np.pi - chain['dec'], chain['ra'])
        * np.atleast_2d(chain['dist']).T).T)

fig = plt.figure(frameon=False)
n = 1 if opts.projection else 2
import numpy as np
from matplotlib import pyplot as plt
import healpy as hp
from matplotlib import collections
from matplotlib import patches
from matplotlib import ticker

ra0 = 130
dec0 = -10
phi0 = np.deg2rad(ra0)
theta0 = 0.5 * np.pi - np.deg2rad(dec0)
# ra0 = 137.8
# dec0 = -39.9
xyz0 = hp.ang2vec(0.5*np.pi - np.deg2rad(dec0), np.deg2rad(ra0))

prob, meta = fits.read_sky_map('../cbc/emfollowup/papers/first2years/data/2015/compare/18951/bayestar.fits.gz', nest=True)

def get_vertices(m):
    m = np.copy(m)
    top_npix = len(m)
    top_nside = hp.npix2nside(top_npix)
    top_order = int(np.log2(top_nside))
    for order in range(top_order + 1):
        nside = 1 << order
        npix = hp.nside2npix(nside)
        stride = 1 << (2 * (top_order - order))
        keep = (hp.pix2vec(nside, np.arange(npix), nest=True) * np.expand_dims(xyz0, 1)).sum(0) >= np.cos(np.deg2rad(30))
        if order < top_order:
            mm = m.reshape((-1, stride))
            keep &= (mm[:, :-1] == mm[:, 1:]).all(axis=1)
            m += hp.ud_grade(np.where(keep, np.nan, 0), nside_out=top_nside, order_in='NEST', order_out='NEST')
from matplotlib import pyplot as plt
import healpy as hp
from matplotlib import collections
from matplotlib import patches
from matplotlib import ticker

ra0 = 130
dec0 = -10
phi0 = np.deg2rad(ra0)
theta0 = 0.5 * np.pi - np.deg2rad(dec0)
# ra0 = 137.8
# dec0 = -39.9
xyz0 = hp.ang2vec(0.5 * np.pi - np.deg2rad(dec0), np.deg2rad(ra0))

prob, meta = fits.read_sky_map(
    '../cbc/emfollowup/papers/first2years/data/2015/compare/18951/bayestar.fits.gz',
    nest=True)


def get_vertices(m):
    m = np.copy(m)
    top_npix = len(m)
    top_nside = hp.npix2nside(top_npix)
    top_order = int(np.log2(top_nside))
    for order in range(top_order + 1):
        nside = 1 << order
        npix = hp.nside2npix(nside)
        stride = 1 << (2 * (top_order - order))
        keep = (hp.pix2vec(nside, np.arange(npix), nest=True) *
                np.expand_dims(xyz0, 1)).sum(0) >= np.cos(np.deg2rad(30))
        if order < top_order: