Exemple #1
0
def run(params, logger):
    """."""
    logger.debug("Loading parameters.")
    asset = params.get('asset')
    name = params.get('name')
    start_year = None
    end_year = None
    temporal_resolution = params.get('temporal_resolution')
    geojsons = json.loads(params.get('geojsons'))
    # geojsons = json.loads(geojsons1)

    crs = params.get('crs')

    # Check the ENV. Are we running this locally or in prod?
    if params.get('ENV') == 'dev':
        EXECUTION_ID = str(random.randint(1000000, 99999999))
        print(EXECUTION_ID)
    else:
        EXECUTION_ID = params.get('EXECUTION_ID', None)
    print(params)

    logger.debug("Running main script.")
    out = download(asset, name, temporal_resolution, start_year, end_year,
                   EXECUTION_ID, logger)
    return out.export(geojsons, 'download', crs, logger, EXECUTION_ID)
Exemple #2
0
def run(params, logger):
    """."""
    logger.debug("Loading parameters.")
    prod_mode = params.get('prod_mode')
    calc_traj = params.get('calc_traj')
    calc_state = params.get('calc_state')
    calc_perf = params.get('calc_perf')
    prod_traj_year_initial = int(params.get('prod_traj_year_initial'))
    prod_traj_year_final = int(params.get('prod_traj_year_final'))
    prod_perf_year_initial = int(params.get('prod_perf_year_initial'))
    prod_perf_year_final = int(params.get('prod_perf_year_final'))
    prod_state_year_bl_start = int(params.get('prod_state_year_bl_start'))
    prod_state_year_bl_end = int(params.get('prod_state_year_bl_end'))
    prod_state_year_tg_start = int(params.get('prod_state_year_tg_start'))
    prod_state_year_tg_end = int(params.get('prod_state_year_tg_end'))
    geojsons = json.loads(params.get('geojsons'))
    crs = params.get('crs')
    prod_traj_method = params.get('trajectory_method')
    ndvi_gee_dataset = params.get('ndvi_gee_dataset')
    climate_gee_dataset = params.get('climate_gee_dataset')

    # crs = ee.Image("users/geflanddegradation/toolbox_datasets/ndvi_modis_2001_2019").projection().crs()

    # Check the ENV. Are we running this locally or in prod?
    if params.get('ENV') == 'dev':
        EXECUTION_ID = str(random.randint(1000000, 99999999))
    else:
        EXECUTION_ID = params.get('EXECUTION_ID', None)

    logger.debug("Running productivity indicators.")

    proj = ee.Image(ndvi_gee_dataset).projection()

    if prod_mode == 'Trends.Earth productivity':
        outs = []
        for geojson in geojsons:
            this_out = None
            if calc_traj:
                traj = productivity_trajectory(geojsons[0]['coordinates'],
                                               int(prod_traj_year_initial),
                                               int(prod_traj_year_final),
                                               prod_traj_method,
                                               ndvi_gee_dataset,
                                               climate_gee_dataset, logger)
                if not this_out:
                    this_out = traj

            if calc_perf:
                perf = productivity_performance(geojsons[0]['coordinates'],
                                                prod_perf_year_initial,
                                                prod_perf_year_final,
                                                ndvi_gee_dataset, geojson,
                                                EXECUTION_ID, logger)
                if not this_out:
                    this_out = perf
                else:
                    this_out.merge(perf)
            if calc_state:
                state = productivity_state(
                    geojsons[0]['coordinates'], prod_state_year_bl_start,
                    prod_state_year_bl_end, prod_state_year_tg_start,
                    prod_state_year_tg_end, ndvi_gee_dataset, EXECUTION_ID,
                    logger)
                if not this_out:
                    this_out = state
                else:
                    this_out.merge(state)

            outs.append(
                this_out.export([geojson], 'productivity', crs, logger,
                                EXECUTION_ID, proj))

        # First need to deserialize the data that was prepared for output from
        # the productivity functions, so that new urls can be appended
        schema = CloudResultsSchema()
        logger.debug("Deserializing")
        final_output = schema.load(outs[0])
        for o in outs[1:]:
            this_out = schema.load(o)
            final_output.urls.extend(this_out.urls)
        logger.debug("Serializing")
        # Now serialize the output again and return it
        return schema.dump(final_output)

    elif prod_mode == 'JRC LPD':
        out = download(
            'users/geflanddegradation/toolbox_datasets/lpd_300m_longlat',
            'Land Productivity Dynamics (LPD)', 'one time', None, None,
            EXECUTION_ID, logger)
        return out.export(geojsons, 'productivity', crs, logger, EXECUTION_ID,
                          proj)
    else:
        raise Exception(
            'Unknown productivity mode "{}" chosen'.format(prod_mode))
Exemple #3
0
def run(params, logger):
    """."""
    logger.debug("Loading parameters.")
    prod_mode = params.get('prod_mode')
    prod_traj_year_initial = params.get('prod_traj_year_initial')
    prod_traj_year_final = params.get('prod_traj_year_final')
    prod_perf_year_initial = params.get('prod_perf_year_initial')
    prod_perf_year_final = params.get('prod_perf_year_final')
    prod_state_year_bl_start = params.get('prod_state_year_bl_start')
    prod_state_year_bl_end = params.get('prod_state_year_bl_end')
    prod_state_year_tg_start = params.get('prod_state_year_tg_start')
    prod_state_year_tg_end = params.get('prod_state_year_tg_end')
    lc_year_initial = params.get('lc_year_initial')
    lc_year_final = params.get('lc_year_final')
    soc_year_initial = params.get('soc_year_initial')
    soc_year_final = params.get('soc_year_final')
    geojsons = json.loads(params.get('geojsons'))
    crs = params.get('crs')
    prod_traj_method = params.get('prod_traj_method')
    ndvi_gee_dataset = params.get('ndvi_gee_dataset')
    climate_gee_dataset = params.get('climate_gee_dataset')
    fl = params.get('fl')
    trans_matrix = params.get('trans_matrix')
    remap_matrix = params.get('remap_matrix')

    if len(trans_matrix) != 49:
        raise GEEIOError("Transition matrix must be a list with 49 entries")
    if len(remap_matrix) != 2 or len(remap_matrix[0]) != 37 or len(remap_matrix[1]) != 37:
        raise GEEIOError("Transition matrix must be a list of two lists with 37 entries each")

    # Check the ENV. Are we running this locally or in prod?
    if params.get('ENV') == 'dev':
        EXECUTION_ID = str(random.randint(1000000, 99999999))
    else:
        EXECUTION_ID = params.get('EXECUTION_ID', None)

    proj = ee.Image(ndvi_gee_dataset).projection()

    logger.debug("Running productivity indicators.")
    if prod_mode == 'Trends.Earth productivity':
        outs = []
        for geojson in geojsons:
            # Need to loop over the geojsons, since performance takes in a 
            # geojson.
            # TODO: pass performance a second geojson defining the entire extent of 
            # all input geojsons so that the performance is calculated the same 
            # over all input areas.
            out = productivity_trajectory(prod_traj_year_initial, 
                                          prod_traj_year_final, prod_traj_method,
                                          ndvi_gee_dataset, climate_gee_dataset, 
                                          logger)

            prod_perf = productivity_performance(prod_perf_year_initial, 
                                                 prod_perf_year_final, 
                                                 ndvi_gee_dataset, geojson, 
                                                 EXECUTION_ID, logger)
            out.merge(prod_perf)

            prod_state = productivity_state(prod_state_year_bl_start, 
                                            prod_state_year_bl_end, 
                                            prod_state_year_tg_start, 
                                            prod_state_year_tg_end,
                                            ndvi_gee_dataset, EXECUTION_ID, logger)
            out.merge(prod_state)

            logger.debug("Running land cover indicator.")
            lc = land_cover(lc_year_initial, lc_year_final, trans_matrix, remap_matrix, 
                            EXECUTION_ID, logger)
            lc.selectBands(['Land cover (degradation)',
                            'Land cover (7 class)'])
            out.merge(lc)

            logger.debug("Running soil organic carbon indicator.")
            soc_out = soc(soc_year_initial, soc_year_final, fl, remap_matrix, False, 
                          EXECUTION_ID, logger)
            soc_out.selectBands(['Soil organic carbon (degradation)',
                                 'Soil organic carbon'])
            out.merge(soc_out)

            out.setVisible(['Soil organic carbon (degradation)',
                            'Land cover (degradation)',
                            'Productivity trajectory (significance)',
                            'Productivity state (degradation)',
                            'Productivity performance (degradation)',
                            'Land Productivity Dynamics (LPD)'])

            outs.append(out.export([geojson], 'sdg_sub_indicators', crs, logger,
                                   EXECUTION_ID, proj))

        # First need to deserialize the data that was prepared for output from 
        # the productivity functions, so that new urls can be appended
        schema = CloudResultsSchema()
        logger.debug("Deserializing")
        final_prod = schema.load(outs[0])
        for o in outs[1:]:
            this_out = schema.load(o)
            final_prod.urls.extend(this_out.urls)
        logger.debug("Serializing")
        # Now serialize the output again so the remaining layers can be added 
        # to it
        return schema.dump(final_prod)

    elif prod_mode == 'JRC LPD':
        out = download('users/geflanddegradation/toolbox_datasets/lpd_300m_longlat',
                       'Land Productivity Dynamics (LPD)', 'one time', 
                       None, None, EXECUTION_ID, logger)
        # Save as int16 to be compatible with other data
        out.image = out.image.int16()

        logger.debug("Running land cover indicator.")
        lc = land_cover(lc_year_initial, lc_year_final, trans_matrix, remap_matrix, 
                        EXECUTION_ID, logger)
        lc.selectBands(['Land cover (degradation)',
                        'Land cover (7 class)'])
        out.merge(lc)

        logger.debug("Running soil organic carbon indicator.")
        soc_out = soc(soc_year_initial, soc_year_final, fl, remap_matrix, False, 
                      EXECUTION_ID, logger)
        soc_out.selectBands(['Soil organic carbon (degradation)',
                             'Soil organic carbon'])
        out.merge(soc_out)

        out.setVisible(['Soil organic carbon (degradation)',
                        'Land cover (degradation)',
                        'Productivity trajectory (significance)',
                        'Productivity state (degradation)',
                        'Productivity performance (degradation)',
                        'Land Productivity Dynamics (LPD)'])

        return out.export(geojsons, 'sdg_sub_indicators', crs, logger,
                          EXECUTION_ID, proj)
    else:
        raise Exception('Unknown productivity mode "{}" chosen'.format(prod_mode))