def eval_landmarks(ref_landmark_path, output_path, cnt):
        ref_lm = landmarks.read_csv(
            ref_landmark_path + "ref_landmarks.csv",
            False)  #csv_2_np.read_csv(out1_path + "ref_landmarks.csv", False)
        out_succ_freq = []
        out_succ_means = []
        out_means = []
        out_stddevs = []
        out_dists = []
        out_dist_summary = []

        for j in xrange(len(param_comb)):
            dists = np.zeros(cnt)
            for i in xrange(cnt):
                tra_lm = landmarks.read_csv(output_path +
                                            "registered_landmarks_%d_%d.csv" %
                                            (j + 1, i + 1))
                dists[i] = landmarks.mean_euclidean(ref_lm, tra_lm)
            succ_freq = np.count_nonzero(
                np.where(dists <= 1.0)) / np.float(cnt)
            succ_means = np.mean(dists[np.where(dists <= 1.0)])

            out_succ_freq.append(succ_freq)
            out_succ_means.append(succ_means)
            out_means.append(np.mean(dists))
            out_stddevs.append(np.std(dists))
            out_dists.append(dists)
            out_dist_summary.append(dt.make_distribution(dists))
            #np.sort(dists)
        return (out_succ_freq, out_succ_means, out_means, out_stddevs,
                out_dists, out_dist_summary)
 def eval_landmarks(ref_landmark_path, output_path, cnt):
     ref_lm = landmarks.read_csv(
         ref_landmark_path + "ref_landmarks.csv",
         False)  #csv_2_np.read_csv(out1_path + "ref_landmarks.csv", False)
     dists = np.zeros(cnt)
     for i in xrange(cnt):
         tra_lm = landmarks.read_csv(output_path +
                                     "registered_landmarks_%d.csv" %
                                     (i + 1))
         dists[i] = landmarks.mean_euclidean(ref_lm, tra_lm)
         #np.sort(dists)
     return (np.mean(dists), np.std(dists), dists,
             dt.make_distribution(dists))