Exemple #1
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case)

    if not FLAGS.do_train and not FLAGS.do_eval:
        raise ValueError("At least one of `do_train`, `do_eval` must be True.")

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    if FLAGS.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, bert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
    run_config = contrib_tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        tpu_config=contrib_tpu.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    num_train_steps = None
    num_warmup_steps = None
    if FLAGS.do_train:
        num_train_steps = int(
            FLAGS.train_data_size / FLAGS.train_batch_size) * FLAGS.epochs
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    model_fn = model_fn_builder(bert_config=bert_config,
                                init_checkpoint=FLAGS.init_checkpoint,
                                learning_rate=FLAGS.learning_rate,
                                num_train_steps=num_train_steps,
                                num_warmup_steps=num_warmup_steps,
                                use_tpu=FLAGS.use_tpu,
                                use_one_hot_embeddings=FLAGS.use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = contrib_tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)

    if FLAGS.do_train:
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        if not tf.gfile.Exists(FLAGS.train_file):
            tf.logging.info(
                "DANITER:File doesn't exist, creating tfrecord data")
            examples = model_builder.load_hellaswag(FLAGS.train_raw_data)
            tf.logging.info("DANITER:Read raw data as json")
            model_builder.file_based_convert_examples_for_bilinear(
                examples, 512, tokenizer, FLAGS.train_file, do_copa=True)
        train_input_fn = file_based_input_fn_builder(
            input_file=FLAGS.train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True)
        estimator.train(input_fn=train_input_fn, steps=num_train_steps)

    if FLAGS.do_eval:
        # This tells the estimator to run through the entire set.
        if FLAGS.eval_data_size < 0:
            eval_steps = None
        else:
            eval_steps = int(FLAGS.eval_data_size / FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        if not tf.gfile.Exists(FLAGS.eval_file):
            examples = model_builder.load_hellaswag(FLAGS.eval_raw_data)
            model_builder.file_based_convert_examples_for_bilinear(
                examples, 512, tokenizer, FLAGS.eval_file, do_copa=True)
        eval_input_fn = file_based_input_fn_builder(
            input_file=FLAGS.eval_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder)

        def _find_valid_cands(curr_step):
            filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
            candidates = []
            for filename in filenames:
                if filename.endswith(".index"):
                    ckpt_name = filename[:-6]
                    idx = ckpt_name.split("-")[-1]
                    if idx != "best" and int(idx) > curr_step:
                        candidates.append(filename)
            return candidates

        tf.logging.info("Evaling all models in output dir")
        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
        key_name = "eval_accuracy"
        tf.logging.info("Checkpoint path " + checkpoint_path)
        if tf.gfile.Exists(checkpoint_path + ".index"):
            tf.logging.info("Found a best model... not good")
            result = estimator.evaluate(input_fn=eval_input_fn,
                                        steps=eval_steps,
                                        checkpoint_path=checkpoint_path)
            best_perf = result[key_name]
            global_step = result["global_step"]
        else:
            tf.logging.info("Setting global step to -1")
            global_step = -1
            best_perf = -1
            checkpoint_path = None
        tf.logging.info("Openning writer " + output_eval_file)
        writer = tf.gfile.GFile(output_eval_file, "w")

        steps_and_files = {}
        filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
        tf.logging.info("Models found " + "\n".join(filenames))
        for filename in filenames:
            if filename.endswith(".index"):
                ckpt_name = filename[:-6]
                cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
                if cur_filename.split("-")[-1] == "best":
                    continue
                gstep = int(cur_filename.split("-")[-1])
                if gstep not in steps_and_files:
                    tf.logging.info(
                        "Add {} to eval list.".format(cur_filename))
                    steps_and_files[gstep] = cur_filename
        tf.logging.info("found {} files.".format(len(steps_and_files)))
        # steps_and_files = sorted(steps_and_files, key=lambda x: x[0])
        if not steps_and_files:
            tf.logging.info(
                "found 0 file, global step: {}. Sleeping.".format(global_step))
        else:
            for ele in sorted(steps_and_files.items()):
                step, checkpoint_path = ele
                if global_step >= step:
                    if len(_find_valid_cands(step)) > 1:
                        for ext in ["meta", "data-00000-of-00001", "index"]:
                            src_ckpt = checkpoint_path + ".{}".format(ext)
                            tf.logging.info("removing {}".format(src_ckpt))
                            # Why should we remove checkpoints?
                            # tf.gfile.Remove(src_ckpt)
                    tf.logging.info("Skipping candidate for some reason")
                    continue
                result = estimator.evaluate(input_fn=eval_input_fn,
                                            steps=eval_steps,
                                            checkpoint_path=checkpoint_path)
                global_step = result["global_step"]
                tf.logging.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    tf.logging.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
                writer.write("best = {}\n".format(best_perf))

                if len(_find_valid_cands(global_step)) > 1:
                    for ext in ["meta", "data-00000-of-00001", "index"]:
                        src_ckpt = checkpoint_path + ".{}".format(ext)
                        tf.logging.info("removing {}".format(src_ckpt))
                        # tf.gfile.Remove(src_ckpt)
                writer.write("=" * 50 + "\n")
        writer.close()
Exemple #2
0
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                  FLAGS.init_checkpoint)

    tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file,
                                           do_lower_case=FLAGS.do_lower_case)

    if not FLAGS.do_train and not FLAGS.do_eval:
        raise ValueError("At least one of `do_train`, `do_eval` must be True.")

    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    if FLAGS.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (FLAGS.max_seq_length, bert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
    run_config = contrib_tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        tpu_config=contrib_tpu.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=is_per_host))

    num_train_steps = None
    num_warmup_steps = None
    if FLAGS.do_train:
        num_train_steps = int(
            FLAGS.train_data_size / FLAGS.train_batch_size) * FLAGS.epochs
        num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

    model_fn = model_fn_builder(bert_config=bert_config,
                                init_checkpoint=FLAGS.init_checkpoint,
                                learning_rate=FLAGS.learning_rate,
                                num_train_steps=num_train_steps,
                                num_warmup_steps=num_warmup_steps,
                                use_tpu=FLAGS.use_tpu,
                                use_one_hot_embeddings=FLAGS.use_tpu)

    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    estimator = contrib_tpu.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.predict_batch_size)

    if FLAGS.do_train:
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)
        if not tf.gfile.Exists(FLAGS.train_file):
            examples = model_builder.load_hellaswag(FLAGS.train_raw_data)
            # if FLAGS.bilin_preproc:
            model_builder.file_based_convert_examples_for_bilinear(
                examples, 512, tokenizer, FLAGS.train_file)
            # else:
            #  model_builder.file_based_convert_examples_to_features(
            #      examples, 512, tokenizer, FLAGS.train_file)
        train_input_fn = file_based_input_fn_builder(
            input_file=FLAGS.train_file,
            seq_length=FLAGS.max_seq_length,
            is_training=True,
            drop_remainder=True)
        estimator.train(input_fn=train_input_fn, steps=num_train_steps)

    if FLAGS.do_eval:
        # This tells the estimator to run through the entire set.
        if FLAGS.eval_data_size < 0:
            eval_steps = None
        else:
            eval_steps = int(FLAGS.eval_data_size / FLAGS.eval_batch_size)

        eval_drop_remainder = True if FLAGS.use_tpu else False
        if not tf.gfile.Exists(FLAGS.eval_file):
            examples = model_builder.load_hellaswag(FLAGS.eval_raw_data)
            # if FLAGS.bilin_preproc:
            model_builder.file_based_convert_examples_for_bilinear(
                examples, 512, tokenizer, FLAGS.eval_file)
            # else:
            #   model_builder.file_based_convert_examples_to_features(
            #       examples, 512, tokenizer, FLAGS.eval_file)
        eval_input_fn = file_based_input_fn_builder(
            input_file=FLAGS.eval_file,
            seq_length=FLAGS.max_seq_length,
            is_training=False,
            drop_remainder=eval_drop_remainder)

        # checkpoints_iterator blocks until a new checkpoint appears.
        for ckpt in contrib_training.checkpoints_iterator(estimator.model_dir):
            try:
                result = estimator.evaluate(input_fn=eval_input_fn,
                                            steps=eval_steps)
                tf.logging.info("********** Eval results:*******\n")
                for key in sorted(result.keys()):
                    tf.logging.info("%s = %s" % (key, str(result[key])))
            except tf.errors.NotFoundError:
                tf.logging.error("Checkpoint path '%s' no longer exists.",
                                 ckpt)