Exemple #1
0
    def onFitPeak(self, evt=None):
        gname = self.groupname

        dtext = []
        model = self.fit_model.GetStringSelection().lower()
        dtext.append('Fit Model: %s' % model)
        bkg = self.fit_bkg.GetStringSelection()
        if bkg == 'None':
            bkg = None
        if bkg is None:
            dtext.append('No Background')
        else:
            dtext.append('Background: %s' % bkg)

        step = self.fit_step.GetStringSelection().lower()
        if model in ('step', 'rectangle'):
            dtext.append('Step form: %s' % step)

        try:
            lgroup = getattr(self.larch.symtable, gname)
            x = lgroup._xdat
            y = lgroup._ydat
        except AttributeError:
            self.write_message('need data to fit!')
            return
        if step.startswith('error'):
            step = 'erf'
        elif step.startswith('arctan'):
            step = 'atan'

        pgroup = fit_peak(x,
                          y,
                          model,
                          background=bkg,
                          step=step,
                          _larch=self.larch)

        dtext = '\n'.join(dtext)
        dtext = '%s\n%s\n' % (
            dtext, fit_report(
                pgroup.params, min_correl=0.25, _larch=self.larch))

        self.fit_report.SetEditable(True)
        self.fit_report.SetValue(dtext)
        self.fit_report.SetEditable(False)

        lgroup.plot_yarrays = [(lgroup._ydat, PLOTOPTS_1, lgroup.plot_ylabel)]
        if bkg is None:
            lgroup._fit = pgroup.fit[:]
            lgroup.plot_yarrays.append((lgroup._fit, PLOTOPTS_2, 'fit'))
        else:
            lgroup._fit = pgroup.fit[:]
            lgroup._fit_bgr = pgroup.bkg[:]
            lgroup.plot_yarrays.append((lgroup._fit, PLOTOPTS_2, 'fit'))
            lgroup.plot_yarrays.append(
                (lgroup._fit_bgr, PLOTOPTS_2, 'background'))
        self.plot_group(gname, new=True)
Exemple #2
0
    def onFitPeak(self, evt=None):
        gname = self.groupname

        dtext = []
        model = self.fit_model.GetStringSelection().lower()
        dtext.append('Fit Model: %s' % model)
        bkg =  self.fit_bkg.GetStringSelection()
        if bkg == 'None':
            bkg = None
        if bkg is None:
            dtext.append('No Background')
        else:
            dtext.append('Background: %s' % bkg)

        step = self.fit_step.GetStringSelection().lower()
        if model in ('step', 'rectangle'):
            dtext.append('Step form: %s' % step)

        try:
            lgroup =  getattr(self.larch.symtable, gname)
            x = lgroup._xdat_
            y = lgroup._ydat_
        except AttributeError:
            self.write_message('need data to fit!')
            return
        if step.startswith('error'):
            step = 'erf'
        elif step.startswith('arctan'):
            step = 'atan'

        pgroup = fit_peak(x, y, model, background=bkg, step=step,
                          _larch=self.larch)

        dtext = '\n'.join(dtext)
        dtext = '%s\n%s\n' % (dtext, fit_report(pgroup.params, min_correl=0.25,
                                                _larch=self.larch))

        self.fit_report.SetEditable(True)
        self.fit_report.SetValue(dtext)
        self.fit_report.SetEditable(False)

        popts1 = dict(style='solid', linewidth=3,
                      marker='None', markersize=4)
        popts2 = dict(style='short dashed', linewidth=2,
                      marker='None', markersize=4)

        lgroup.plot_yarrays = [(lgroup._ydat_, popts1, lgroup.plot_ylabel)]
        if bkg is None:
            lgroup._fit = pgroup.fit[:]
            lgroup.plot_yarrays.append((lgroup._fit, popts2, 'fit'))
        else:
            lgroup._fit     = pgroup.fit[:]
            lgroup._fit_bgr = pgroup.bkg[:]
            lgroup.plot_yarrays.append((lgroup._fit,     popts2, 'fit'))
            lgroup.plot_yarrays.append((lgroup._fit_bgr, popts2, 'background'))
        self.onPlot()
Exemple #3
0
def xrf_calib_fitrois(mca, _larch=None):
    """initial calibration step for MCA:
    find energy locations for all ROIs

    """
    if not isLarchMCAGroup(mca):
        print('Not a valid MCA')
        return

    energy = 1.0 * mca.energy
    chans = 1.0 * np.arange(len(energy))
    counts = mca.counts
    bgr = getattr(mca, 'bgr', None)
    if bgr is not None:
        counts = counts - bgr
    calib = OrderedDict()
    for roi in mca.rois:
        words = roi.name.split()
        elem = words[0].title()
        family = 'ka'
        if len(words) > 1:
            family = words[1]
        try:
            eknown = xray_line(elem, family, _larch=_larch)[0] / 1000.0
        except:
            continue
        llim = max(0, roi.left - roi.bgr_width)
        hlim = min(len(chans) - 1, roi.right + roi.bgr_width)
        fit = fit_peak(chans[llim:hlim],
                       counts[llim:hlim],
                       'Gaussian',
                       background='constant',
                       _larch=_larch)

        ccen = fit.params.center.value
        ecen = ccen * mca.slope + mca.offset
        fwhm = 2.354820 * fit.params.sigma.value * mca.slope
        calib[roi.name] = (eknown, ecen, fwhm, ccen, fit)
    mca.init_calib = calib
Exemple #4
0
def xrf_calib_fitrois(mca, _larch=None):
    """initial calibration step for MCA:
    find energy locations for all ROIs

    """
    if not isLarchMCAGroup(mca):
        print( 'Not a valid MCA')
        return

    energy = 1.0*mca.energy
    chans = 1.0*np.arange(len(energy))
    counts = mca.counts
    bgr = getattr(mca, 'bgr', None)
    if bgr is not None:
        counts = counts - bgr
    calib = OrderedDict()
    for roi in mca.rois:
        words = roi.name.split()
        elem = words[0].title()
        family = 'ka'
        if len(words) > 1:
            family = words[1]
        try:
            eknown = xray_line(elem, family, _larch=_larch)[0]/1000.0
        except:
            continue
        llim = max(0, roi.left - roi.bgr_width)
        hlim = min(len(chans)-1, roi.right + roi.bgr_width)
        fit = fit_peak(chans[llim:hlim], counts[llim:hlim],
                       'Gaussian', background='constant',
                       _larch=_larch)

        ccen = fit.params['center'].value
        ecen = ccen * mca.slope + mca.offset
        fwhm = 2.354820 * fit.params['sigma'].value * mca.slope
        calib[roi.name] = (eknown, ecen, fwhm, ccen, fit)
    mca.init_calib = calib