Exemple #1
0
 def test_zero_points_nan_outcome(self):
     """Zero points should return NaN."""
     point_cloud = create_point_cloud(np.zeros(0), np.zeros(0), np.zeros(0))
     targets = create_point_cloud(np.zeros(1), np.zeros(1), np.zeros(1))
     result = BandRatioFeatureExtractor(2,
                                        4).extract(point_cloud, [[]],
                                                   targets, 0, Cell(4))
     self.assertTrue(np.isnan(result[0]))
 def test_cell_grid_origin(self):
     _, points = create_points_in_xy_grid(lambda x, y: np.random.rand())
     point_cloud = create_point_cloud(points[:, 0], points[:, 1], points[:,
                                                                         2])
     targets = create_point_cloud(np.array([0]), np.array([0]),
                                  np.array([0]))  # Center of grid
     neighborhoods = list(
         compute_neighborhoods(point_cloud, targets, Cell(1.99)))
     assert_equal(len(neighborhoods[0]), 1)
 def test_cube_grid(self):
     _, points = create_points_in_xy_grid(lambda x, y: 10 * (x % 2))
     point_cloud = create_point_cloud(points[:, 0], points[:, 1], points[:,
                                                                         2])
     targets = create_point_cloud(np.array([4.5]), np.array([4.5]),
                                  np.array([0]))  # Center of grid
     neighborhoods = list(
         compute_neighborhoods(point_cloud, targets, Cube(2)))
     assert_equal(len(neighborhoods[0]), 2)
def assert_std_for_z_function_in_xy_grid(z_checkered, expected):
    """Assert that the standard deviation of z values in a grid of unit x and y"""
    n_points, points = create_points_in_xy_grid(z_checkered)
    point_cloud = create_point_cloud(points[:, 0], points[:, 1], points[:, 2])
    targets = create_point_cloud([0], [0], [0])
    compute_features(point_cloud, [range(n_points)], 0, targets, ['sigma_z'],
                     InfiniteCylinder(10))
    np.testing.assert_almost_equal(targets[keys.point]['sigma_z']['data'][0],
                                   expected)
Exemple #5
0
 def test_cell_grid(self):
     _, points = create_points_in_xy_grid(lambda x, y: np.random.rand())
     point_cloud = create_point_cloud(points[:, 0], points[:, 1], points[:,
                                                                         2])
     targets = create_point_cloud(np.array([4.5]), np.array([4.5]),
                                  np.array([4.5]))  # Center of grid
     neighborhoods = compute_neighborhoods(point_cloud, targets, Cell(2))
     neighborhood = next(neighborhoods)
     assert_equal(len(neighborhood[0]), 4)
Exemple #6
0
 def test_no_lower_bound_correct_outcome(self):
     """No lower bound should return all points below."""
     n = 10
     point_cloud = create_point_cloud(np.zeros(n), np.zeros(n),
                                      np.hstack([np.zeros(8),
                                                 np.ones(2)]))
     targets = create_point_cloud(np.zeros(1), np.zeros(1), np.zeros(1))
     result = BandRatioFeatureExtractor(None, 0.5).extract(
         point_cloud, [range(n)], targets, 0, Cell(4))
     np.testing.assert_equal(result[0], 0.8)
Exemple #7
0
 def test_cell_grid_larger_sample_size(self):
     _, points = create_points_in_xy_grid(lambda x, y: np.random.rand())
     point_cloud = create_point_cloud(points[:, 0], points[:, 1], points[:,
                                                                         2])
     targets = create_point_cloud(np.array([4.5]), np.array([4.5]),
                                  np.array([4.5]))  # Center of grid
     neighborhoods = compute_neighborhoods(
         point_cloud, targets, Cell(5),
         sample_size=10000)  # Result 36 neighbors
     _ = next(neighborhoods)
    def test_cell(self):
        n_included = 123
        n_excluded = 456
        x = np.append(np.zeros(n_included), np.ones(n_excluded))
        environment = create_point_cloud(x, x, x)
        target = create_point_cloud(np.zeros(1), np.zeros(1), np.zeros(1))

        cube = Cube(1)  # volume = 1.0

        neighborhoods = compute_neighborhoods(environment, target, cube)
        extractor = PointDensityFeatureExtractor()
        densities = extractor.extract(environment, neighborhoods, target, [0], cube)
        np.testing.assert_allclose(densities, n_included)
Exemple #9
0
    def test_cell(self):
        n_included = 123
        n_excluded = 456
        x = np.append(np.zeros(n_included), np.ones(n_excluded))
        environment = create_point_cloud(x, x, x)
        target = create_point_cloud(np.zeros(1), np.zeros(1), np.zeros(1))

        cube = Cube(1)  # volume = 1.0
        neighbors_index = compute_neighborhoods(environment, target, cube)

        extractor = PointDensityFeatureExtractor()
        for index in neighbors_index:
            d = extractor.extract(environment, index, target, [0], cube)
            self.assertEqual(d, n_included)
Exemple #10
0
 def test_target_number_matches_neighborhood_number(self):
     _, points = create_points_in_xy_grid(lambda x, y: 10 * (x % 2))
     environment_point_cloud = create_point_cloud(points[:, 0],
                                                  points[:, 1], points[:,
                                                                       2])
     assert_target_number_matches_neighborhood_number(
         environment_point_cloud)
Exemple #11
0
 def test_cell_no_points(self):
     point_cloud = create_emtpy_point_cloud()
     targets = create_point_cloud(np.zeros(1), np.zeros(1), np.zeros(1))
     neighborhoods = compute_neighborhoods(point_cloud, targets, Cell(1))
     neighborhood = next(neighborhoods)
     print(neighborhood)
     assert_equal(len(neighborhood[0]), 0)
def _create_targets_and_extract_features(feature_names, n):
    x = np.ones(n)
    y = np.ones(n)
    z = np.ones(n)
    target = test_tools.create_point_cloud(x, y, z)
    _compute_features(target, feature_names)
    return target
def assert_target_number_matches_neighborhood_number(environment_point_cloud):
    n_targets = 99
    targets = create_point_cloud(np.array(range(n_targets)),
                                 np.array(range(n_targets)),
                                 np.array(range(n_targets)))
    neighborhoods = list(
        compute_neighborhoods(environment_point_cloud, targets, Cube(2)))
    assert_equal(len(neighborhoods), n_targets)
 def _get_random_targets(self):
     """Get a random target pc."""
     num_all_pc_points = len(self.point_cloud[keys.point]["x"]["data"])
     rand_indices = [
         random.randint(0, num_all_pc_points) for p in range(20)
     ]
     x, y, z = utils.get_point(self.point_cloud, rand_indices)
     return create_point_cloud(x, y, z)
Exemple #15
0
 def test_normalize_tiny_unequal_point_cloud(self):
     point_cloud = create_point_cloud([0, 0, 0], [0, 0, 0], [1, 2, 3])
     normalized_point_cloud = normalize(point_cloud)
     normalized_values = get_attribute_value(normalized_point_cloud,
                                             range(3), normalized_height)
     np.testing.assert_allclose(normalized_values,
                                np.array([0, 1, 2]),
                                atol=1e-7)
Exemple #16
0
    def test_percentile_z(self):
        xyz = np.array([list(p) for p in list(itertools.product(np.linspace(0, 1, 11), repeat=3))])
        point_cloud = create_point_cloud(xyz[:, 0], xyz[:, 1], xyz[:, 2])
        expected = np.linspace(0.1, 1.0, 10)
        extractors = [PercentileFeatureExtractor(p) for p in range(10, 110, 10)]

        percentiles = [e.extract(point_cloud, [range(len(xyz))], None, None, None)[0] for e in extractors]

        np.testing.assert_allclose(percentiles, expected)
Exemple #17
0
    def test_percentile_norm_z(self):
        xyz = np.array([list(p) for p in list(itertools.product(np.linspace(0, 1, 11), repeat=3))])
        point_cloud = create_point_cloud(xyz[:, 0], xyz[:, 1], np.zeros_like(xyz[:, 2]), normalized_z=xyz[:, 2])
        expected = np.linspace(0.1, 1.0, 10)
        extractors = [PercentileFeatureExtractor(p, data_key=keys.normalized_height) for p in range(10, 110, 10)]

        percentiles = np.hstack([e.extract(point_cloud, [range(len(xyz))], None, None, None)[0] for e in extractors])

        np.testing.assert_allclose(percentiles, expected)
Exemple #18
0
 def test_normalize_tiny_unequal_point_cloud_multiple_cells(self):
     """Last of the 3 points is not in the neighborhood of the others."""
     point_cloud = create_point_cloud([0, 0, 5], [0, 0, 0], [1, 2, 3])
     normalized_point_cloud = normalize(point_cloud, cell_size=2)
     normalized_values = get_attribute_value(normalized_point_cloud,
                                             range(3), normalized_height)
     np.testing.assert_allclose(normalized_values,
                                np.array([0, 1, 0]),
                                atol=1e-7)
    def test_use_norm_z(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 5])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhood = [[0, 1, 2]]

        kurtosis = self.extractor.extract(point_cloud, neighborhood, None, None, None)[0]

        self.assertAlmostEqual(kurtosis, -1.5)
    def test_use_norm_z(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 6])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhood = [[0, 1, 2]]

        median = self.extractor.extract(point_cloud, neighborhood, None, None, None)

        np.testing.assert_almost_equal(median, 4)
 def test_vectorized_chunks():
     """Should not throw error for non requested but provided features."""
     feature_map._get_default_extractors = _get_test_extractors
     n = 2000000  # enough to be too big for a single chunk
     x = np.zeros(n)
     y = np.zeros(n)
     z = np.zeros(n)
     target = test_tools.create_point_cloud(x, y, z)
     feature_names = ['vectorized1']
     _compute_features(target, feature_names)
Exemple #22
0
    def test_use_norm_z(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 6])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhood = [[0, 1, 2]]

        skew = self.extractor.extract(point_cloud, neighborhood, None, None, None)

        self.assertGreater(skew, 0.1)
Exemple #23
0
    def test_use_optional_data_key(self):
        """Should use data under the given data key (normalized z)."""
        n = 10
        zeros = np.zeros(n)
        point_cloud = create_point_cloud(zeros,
                                         zeros,
                                         zeros,
                                         normalized_z=np.hstack(
                                             [np.zeros(8),
                                              np.ones(2)]))
        targets = create_point_cloud(np.zeros(1), np.zeros(1), np.zeros(1))
        extractor = BandRatioFeatureExtractor(None,
                                              0.5,
                                              data_key=keys.normalized_height)

        result = extractor.extract(point_cloud, [range(n)], targets, 0,
                                   Cell(4))

        np.testing.assert_equal(result[0], 0.8)
    def test_use_norm_z(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 5])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhoods = [[0, 1, 2]]

        entropy = self.extractor.extract(point_cloud, neighborhoods, None,
                                         None, None)[0]

        self.assertNotAlmostEqual(entropy, 0)
    def test_height_stats(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 5])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhood = [[0, 1, 2]]

        variance = self.extractor.extract(point_cloud, [neighborhood], None,
                                          None, None)[0]

        self.assertAlmostEqual(variance, 2 / 3)
 def test_with_neighborhood_generator():
     """Should run for all extractors without error meaning that neighborhood generator is only iterated once.
     Using actual feature extractors here because test feature extractors don't use neighborhoods. """
     n = 200
     feature_names = ['vectorized1', 'test1_a', 'median_z', 'mean_z']
     x = np.ones(n)
     y = np.ones(n)
     z = np.ones(n)
     target = test_tools.create_point_cloud(x, y, z)
     neighborhoods = ([] for _ in range(len(target["vertex"]["x"]["data"])))
     feature_extraction.compute_features({}, neighborhoods, target,
                                         feature_names, Sphere(5))
    def test_eigenvalues_of_too_few_points_results_in_0():
        """If there are too few points to calculate the eigen values don't output NaN or inf."""
        a = np.array([5])
        pc = create_point_cloud(a, a, a)

        compute_features(pc, [[0]], pc, ["eigenv_1", "eigenv_2", "eigenv_3"],
                         InfiniteCylinder(5))

        eigen_val_123 = np.array(
            [pc[keys.point]['eigenv_{}'.format(i)]['data'] for i in [1, 2, 3]])
        assert not np.any(np.isnan(eigen_val_123))
        assert not np.any(np.isinf(eigen_val_123))
Exemple #28
0
def assert_expected_ratios(expected_ratios,
                           n_below_limits,
                           n_withins,
                           n_above_limits,
                           volume=Cell(4)):
    n_ratios = len(expected_ratios)
    neighborhoods, point_cloud = generate_test_point_cloud_and_neighborhoods(
        n_below_limits, n_withins, n_above_limits, n_ratios)
    targets = create_point_cloud(np.zeros(n_ratios), np.zeros(n_ratios),
                                 np.zeros(n_ratios))
    extractor = BandRatioFeatureExtractor(LOWER_LIMIT, UPPER_LIMIT)
    result = extractor.extract(point_cloud, neighborhoods, targets, 0, volume)
    np.testing.assert_allclose(result, expected_ratios)
Exemple #29
0
    def test_use_norm(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 5])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhood = [[0, 1, 2]]

        extractor = RangeFeatureExtractor(data_key=keys.normalized_height)
        _max, _min, _range = extractor.extract(point_cloud, neighborhood, None, None, None)

        self.assertAlmostEquals(_max, 5)
        self.assertAlmostEquals(_min, 3)
        self.assertAlmostEquals(_range, 2)
Exemple #30
0
    def test_height_stats(self):
        x = y = np.array([0, 0, 0])
        z = np.array([2, 2, 2])
        normalized_z = np.array([3, 4, 5])
        point_cloud = create_point_cloud(x, y, z, normalized_z=normalized_z)
        neighborhood = [[0, 1, 2]]

        mean, std, coeff = self.extractor.extract(point_cloud, neighborhood,
                                                  None, None, None)

        self.assertAlmostEquals(mean, 4)
        self.assertAlmostEquals(std, np.sqrt(2 / 3))
        self.assertAlmostEquals(coeff, np.sqrt(2 / 3) / 4)