Exemple #1
0
class LinearModel(Model):
    """docstring for ClassName"""

    def __init__(self,
                 n_features,
                 activation=Tanh(),
                 good_enough_loss=0.045):
        Model.__init__(self, good_enough_loss)
        self.layer = Layer(n_features, 1, activation=activation)

    def init_optimizers_for_layers(self, optimizer):
        self.layer.compile(optimizer)

    def predict(self, x):
        A = self.layer.forward(x)
        return A

    def step(self, x_batch, y_batch):
        A = self.layer.forward(x_batch)
        dA = self.loss_func.derivative(y_batch, A)
        dA_prev, dW, db = self.layer.backward(dA)
        self.layer.update_params(dW, db)
Exemple #2
0
class Network(object):
    def __init__(self, input_size, hidden_units, n_class=1):
        self.layers = []
        self.input_size = input_size
        for siz in hidden_units:
            hidden_layer = Layer(input_size,
                                 siz,
                                 activation=relu,
                                 derivation=relu_derivation)
            self.layers.append(hidden_layer)
            input_size = siz
        if n_class == 1:
            self.output_layer = Layer(input_size,
                                      1,
                                      activation=sigmoid,
                                      derivation=None)
        else:
            self.output_layer = Layer(input_size,
                                      n_class,
                                      activation=softmax,
                                      derivation=None)

    def predict(self, all_x):
        preds = []
        for j in range(all_x.shape[0]):
            x = all_x[j]
            pred = self.predict_one_sample(x.reshape(-1, 1))
            preds.append(pred)
        return np.array(preds).reshape(-1, 10)

    def predict_one_sample(self, x):
        output = x
        for layer in self.layers:
            output = layer.forward(output)

        output = self.output_layer.forward(output)
        return output

    def train_one_sample(self, y, pred, learning_rate):
        # 交叉熵损失函数
        delta = y - pred
        self.output_layer.backward(None, delta)

        w = self.output_layer.w
        for layer in reversed(self.layers):
            delta = layer.backward(w, delta)
            w = layer.w

        self.output_layer.update(learning_rate)
        for layer in self.layers:
            layer.update(learning_rate)

    def train(self, train_x, train_y, epoch, learning_rate):
        print("start train ...")
        for i in range(epoch):
            for j in range(train_x.shape[0]):
                x, y = train_x[j], train_y[j]
                pred = self.predict_one_sample(x.reshape(-1, 1))
                self.train_one_sample(y.reshape(-1, 1), pred, learning_rate)

        print("train done")

    def loss(self, y_label, y_pred):
        ls = y_label * (-np.log(y_pred))
        return np.sum(ls)