def compute(self, input, label): """ compute loss """ cross_entropy = layers.CrossEntropyLayer() reduce_mean = layers.ReduceMeanLayer() loss = reduce_mean.ops(cross_entropy.ops(input, label)) return loss
def compute(self, pos, neg): """ compute loss """ sigmoid = layers.SigmoidLayer() reduce_mean = layers.ReduceMeanLayer() loss = reduce_mean.ops(sigmoid.ops(neg - pos)) return loss
def compute(self, input, label): """ compute loss """ reduce_mean = layers.ReduceMeanLayer() cost = fluid.layers.cross_entropy(input=input, label=label) avg_cost = reduce_mean.ops(cost) return avg_cost
def compute(self, input, label): """ compute loss """ softmax_with_cross_entropy = layers.SoftmaxWithCrossEntropyLayer() reduce_mean = layers.ReduceMeanLayer() cost = softmax_with_cross_entropy.ops(input, label) avg_cost = reduce_mean.ops(cost) return avg_cost
def compute(self, pos, neg): """ compute loss """ elementwise_max = layers.ElementwiseMaxLayer() elementwise_add = layers.ElementwiseAddLayer() elementwise_sub = layers.ElementwiseSubLayer() constant = layers.ConstantLayer() reduce_mean = layers.ReduceMeanLayer() loss = reduce_mean.ops( elementwise_max.ops( constant.ops(neg, neg.shape, "float32", 0.0), elementwise_add.ops( elementwise_sub.ops(neg, pos), constant.ops(neg, neg.shape, "float32", self.margin)))) return loss