Exemple #1
0
    def forward(self, isequence, ilenghts, queryvector=None):
        #isequence : batch_size*num_steps*input_emb
        #ilenghts : batch_size

        if isequence.dim() == 5:
            bs, nf, c, h, w = isequence.size()
            isequence = isequence.view(bs, nf, c, -1)
            isequence = isequence.sum(dim=-1)
            isequence = isequence / (h * w)
        isequence = self.dropout_layer(isequence)
        #isequence = functional.relu(self.linear(isequence))

        contextvector = None
        imask = Variable(utils.sequence_mask(ilenghts))

        if self.configuration == 'MP':
            if self.contextvector is not None:
                contextvector = self.contextvector
            else:
                #print("MP")
                contextvector = isequence.sum(dim=1)
                contextvector = contextvector.div(
                    ilenghts.unsqueeze(1).float())
                #contextvector : batch_size*input_emb
                self.contextvector = contextvector

        if self.recurrent:
            if self.contextvector is not None and self.inputvector is not None:
                contextvector = self.contextvector
                isequence = self.inputvector
            else:
                #print("Recurrent")
                isequence, ihidden, _ = self.recurrent_layer(
                    isequence, ilenghts)
                #isequence : batch_size*num_steps*hidden_dim
                #ihidden : batch_size*hidden_dim
                contextvector = ihidden
                self.contextvector = contextvector
                self.inputvector = isequence

        if self.attention:
            #print("Attention")
            vector_sequence_attention, sequence_attention_weights = self.attention_function(
                isequence, queryvector, imask, softmax=True)
            contextvector = vector_sequence_attention
            #contextvector : batch_size*input_emb/hidden_dim
        return contextvector
Exemple #2
0
	def forward(self, videoframes, videoframes_lengths, inputwords, captionwords_lengths):
		#videoframes : batch_size*num_frames*3*224*224
		#videoframes_lengths : batch_size
		#inputwords : batch_size*num_words
		#outputwords : batch_size*num_words
		#captionwords_lengths : batch_size

		videoframes_mask = Variable(utils.sequence_mask(videoframes_lengths)) 
		#videoframes_mask: batch_size*num_frames

		#redundant because we are masking the loss
		#captionwords_mask = Variable(utils.sequence_mask(captionwords_lengths)) 
		#captionwords_mask: batch_size*num_words

		batch_size, num_frames, rgb, height, width = videoframes.size()
		videoframes = videoframes.view(-1,rgb,height,width)	
		#videoframes : batch_size.num_frames*3*224*224	
		videoframefeatures = self.pretrained_vision_layer(videoframes)
		videoframefeatures_fc = videoframefeatures[1] 
		#videoframefeatures_fc : batch_size.num_frames*1000
		videoframefeatures_fc = self.vision_feature_dimred_layer(videoframefeatures_fc)
		#videoframefeatures_fc : batch_size.num_frames*rnn_hdim
		_, feature_dim = videoframefeatures_fc.size()
		videoframefeatures_fc = videoframefeatures_fc.view(batch_size, num_frames, feature_dim) 
		#videoframefeatures_fc : batch_size*num_frames*1000
		videoframefeatures_fc = utils.mask_sequence(videoframefeatures_fc, videoframes_mask)

		videoframefeatures_fcmeanpooling = videoframefeatures_fc.sum(dim = 1)
		videoframefeatures_fcmeanpooling = videoframefeatures_fcmeanpooling.div(videoframes_lengths.unsqueeze(1).float())

		inputword_vectors = self.pretrained_words_layer(inputwords) 
		#inputword_vectors: batch_size*num_words*wembed_dim

		#outputword_values = self.sentence_decoder_layer(inputword_vectors, videoframefeatures_fcmeanpooling, captionwords_mask)
		outputword_values = self.sentence_decoder_layer(inputword_vectors, videoframefeatures_fcmeanpooling)
		#outputword_values = batch_size*num_words*vocab_size

		outputword_log_probabilities = functional.log_softmax(outputword_values, dim=2)
		#outputword_values = batch_size*num_words*vocab_size

		#outputword_log_probabilities = utils.mask_sequence(outputword_log_probabilities, captionwords_mask)

		return outputword_log_probabilities #batch_size*num_words*vocab_size
            return sequence1_sequence2_attention, sequence2_attention_weights


if __name__ == '__main__':
    #bidir = BiDirAttention({'similarity_function': 'DotProduct', 'one_shot_attention':True})
    bidir = BiDirAttention({
        'similarity_function': 'WeightedSumProjection',
        'sequence1_dim': 10,
        'sequence2_dim': 10,
        'projection_dim': 10,
        'one_shot_attention': True,
        'self_match_attention': False
    })
    sequence1_sequence2_attention, sequence2_attention_weights, sequence2_sequence1_attention, sequence1_attention_weights =\
     bidir(Variable(torch.randn(2,5,10)), Variable(torch.randn(2,3,10)),\
     Variable(utils.sequence_mask(torch.LongTensor([5,3]))), Variable(utils.sequence_mask(torch.LongTensor([3,2]))))
    print(sequence1_sequence2_attention)
    print(sequence2_attention_weights)
    print(sequence2_sequence1_attention)
    print(sequence1_attention_weights)
    '''bidir = BiDirAttention({'similarity_function': 'WeightedSumProjection', 'sequence1_dim':7, 'sequence2_dim':7, 'projection_dim':7, 'one_shot_attention':False, 'self_match_attention':True})
	sequence = Variable(torch.randn(2,5,7))
	sequence_sequence_attention, sequence_attention_weights = bidir(sequence, sequence,\
		Variable(utils.sequence_mask(torch.LongTensor([5,3]))), Variable(utils.sequence_mask(torch.LongTensor([5,3]))))
	print(sequence_sequence_attention)
	print(sequence_attention_weights)'''
    '''bidir = BiDirAttention({'similarity_function': 'WeightedInputsConcatenation', 'input_dim': 10})
	print(bidir(Variable(torch.randn(2,5,10)), Variable(torch.randn(2,3,10))))
	bidir = BiDirAttention({'similarity_function': 'WeightedInputsDotConcatenation', 'input_dim': 10})
	print(bidir(Variable(torch.randn(2,5,10)), Variable(torch.randn(2,3,10))))'''
def train():
    cur_dir = os.getcwd()
    input_dir = 'input'
    glove_dir = 'glove/'
    glove_filename = 'glove.6B.300d.txt'
    glove_embdim = 300
    glove_filepath = os.path.join(glove_dir, glove_filename)

    data_parallel = False
    frame_trunc_length = 45

    train_batch_size = 32
    train_num_workers = 0
    train_pretrained = True
    train_pklexist = True
    eval_batch_size = 1

    print("Get train data...")
    spatial = True
    spatialpool = False
    #train_pkl_file = 'MSRVTT/Pixel/Resnet1000/trainvideo.pkl'
    if not spatial: train_pkl_file = 'MSRVTT/Pixel/Alexnet1000/trainvideo.pkl'
    else: train_pkl_file = 'MSRVTT/Pixel/Resnet51222/trainvideo.pkl'

    if spatialpool: train_pkl_file = 'MSRVTT/Pixel/Alexnet25622/trainvideo.pkl'
    file_names = [('MSRVTT/captions.json', 'MSRVTT/trainvideo.json',
                   'MSRVTT/Frames')]
    files = [[os.path.join(cur_dir, input_dir, filetype) for filetype in file]
             for file in file_names]
    train_pkl_path = os.path.join(cur_dir, input_dir, train_pkl_file)

    train_dataloader, vocab, glove, train_data_size = loader.get_train_data(
        files,
        train_pkl_path,
        glove_filepath,
        glove_embdim,
        batch_size=train_batch_size,
        num_workers=train_num_workers,
        pretrained=train_pretrained,
        pklexist=train_pklexist,
        data_parallel=data_parallel,
        frame_trunc_length=frame_trunc_length,
        spatial=spatial or spatialpool)

    # print("Get validation data...")
    # file_names = [('MSRVTT/captions.json', 'MSRVTT/valvideo.json.sample', 'MSRVTT/Frames')]
    # files = [[os.path.join(cur_dir, input_dir, filetype) for filetype in file] for file in file_names]
    # val_dataloader = loader.get_val_data(files, vocab, glove, eval_batch_size)

    modelname = 'FinalDropoutResnet020203NoResLinear'
    #modelname = 'FinalDropout000000Res'
    if spatial: modeltype = 'stal'
    else: modeltype = 'csal'

    save_dir = 'models/{}/'.format(modelname + modeltype)
    save_dir_path = os.path.join(cur_dir, save_dir)
    if not os.path.exists(save_dir_path):
        os.makedirs(save_dir_path)

    glovefile = open(os.path.join(save_dir, 'glove.pkl'), 'wb')
    pickle.dump(glove, glovefile)
    glovefile.close()

    vocabfile = open(os.path.join(save_dir, 'vocab.pkl'), 'wb')
    pickle.dump(vocab, vocabfile)
    vocabfile.close()

    print(save_dir)

    pretrained_wordvecs = glove.index2vec
    #model_name = MP, MPAttn, LSTM, LSTMAttn for CSAL
    '''hidden_dimension = 256 #glove_embdim
	dict_args = {
					"intermediate_layers" : ['layer4', 'fc'],
					"pretrained_feature_size" : 1000,
					#
					"word_embeddings" : pretrained_wordvecs,
					"word_embdim" : glove_embdim,
					"vocabulary_size" : len(pretrained_wordvecs),
					"use_pretrained_emb" : True,
					"backprop_embeddings" : False,
					#
					"encoder_configuration" : 'LSTMAttn',
					"encoder_input_dim" : hidden_dimension,
					"encoder_rnn_type" : 'LSTM',
					"encoder_rnn_hdim" : hidden_dimension,
					"encoder_num_layers" : 1,
					"encoder_dropout_rate" : 0.2,
					"encoderattn_projection_dim" : hidden_dimension/2,
					"encoderattn_query_dim" : hidden_dimension,
					#
					"decoder_rnn_input_dim" : glove_embdim + hidden_dimension,
					#"decoder_rnn_input_dim" : glove_embdim,
					"decoder_dropout_rate" : 0.2,
					"decoder_rnn_hidden_dim" : hidden_dimension,
					"decoder_tie_weights" : False,
					"decoder_rnn_type" : 'LSTM',
					"every_step": True,
					#"every_step": False
				}'''

    #SpatialTemporal, LSTMTrackSpatial, LSTMTrackSpatialTemporal
    hidden_dim = 256  #256
    dict_args = {
        "word_embeddings": pretrained_wordvecs,
        "word_embdim": glove_embdim,
        "use_pretrained_emb": True,
        "backprop_embeddings": False,
        "vocabulary_size": len(pretrained_wordvecs),
        "encoder_configuration": 'LSTMTrackSpatialTemporal',
        "frame_channel_dim": 512,
        "frame_spatial_dim": 2,
        "encoder_rnn_type": 'LSTM',
        "frame_channelred_dim": hidden_dim,
        "encoder_rnn_hdim": hidden_dim,
        "encoder_dropout_rate": 0.2,
        "encoderattn_projection_dim": hidden_dim / 2,
        "encoderattn_query_dim": hidden_dim,
        "encoder_linear": True,
        "decoder_rnn_word_dim": glove_embdim,
        #"decoder_rnn_input_dim" : hidden_dim + 256,
        "decoder_rnn_input_dim": hidden_dim + hidden_dim,
        "decoder_rnn_hidden_dim": hidden_dim,
        "decoder_rnn_type": 'LSTM',
        "decoder_top_dropout_rate": 0.3,
        "decoder_bottom_dropout_rate": 0.2,
        "residual_connection": False,
        "every_step": True
    }

    if not spatial: csal = CSAL(dict_args)
    else: csal = STAL(dict_args)
    print(dict_args)

    num_epochs = 500
    learning_rate = 1
    criterion = nn.NLLLoss(reduce=False)
    optimizer = optim.Adadelta(filter(lambda p: p.requires_grad,
                                      csal.parameters()),
                               lr=learning_rate,
                               rho=0.9,
                               eps=1e-06,
                               weight_decay=0)
    if USE_CUDA:
        if data_parallel: csal = nn.DataParallel(csal).cuda()
        else: csal = csal.cuda()
        criterion = criterion.cuda()

    print("Start training...")
    for epoch in range(num_epochs):

        start_time = time.time()
        for i, batch in enumerate(train_dataloader):

            load_time = time.time()
            #######Load Data
            padded_imageframes_batch = Variable(torch.stack(
                batch[0]))  #batch_size*num_frames*3*224*224
            frame_sequence_lengths = Variable(torch.LongTensor(
                batch[1]))  #batch_size
            padded_inputwords_batch = Variable(torch.LongTensor(
                batch[2]))  #batch_size*num_words
            input_sequence_lengths = Variable(torch.LongTensor(
                batch[3]))  #batch_size
            padded_outputwords_batch = Variable(torch.LongTensor(
                batch[4]))  #batch_size*num_words
            output_sequence_lengths = Variable(torch.LongTensor(
                batch[5]))  #batch_size
            video_ids_list = batch[6]
            captionwords_mask = Variable(
                utils.sequence_mask(
                    output_sequence_lengths))  #batch_size*num_words
            if USE_CUDA:
                async = data_parallel
                padded_imageframes_batch = padded_imageframes_batch.cuda(
                    async=async)
                frame_sequence_lengths = frame_sequence_lengths.cuda(
                    async=async)
Exemple #5
0
                                    2)  #sequence: batch_size*num_words*iembed2

        sequence_attention_weights = utils.masked_softmax(
            similarity_vector, sequence_mask.float())

        vector_sequence_attention = utils.attention_pooling(
            sequence_attention_weights,
            sequence)  #vector_sequence_attention: batch_size*iembed2

        #Will it save some memory?
        if self.training:
            sequence_attention_weights = None

        if softmax:
            return vector_sequence_attention, sequence_attention_weights
        else:
            return vector_sequence_attention, similarity_vector


if __name__ == '__main__':
    unidir = UniDirAttention({
        'similarity_function': 'WeightedSumProjection',
        'sequence1_dim': 6,
        'sequence2_dim': 20,
        'projection_dim': 10
    })
    vector_sequence_attention, sequence_attention_weights = unidir(Variable(torch.randn(2,5,6)), Variable(torch.randn(1,20).expand(2,20)),\
     Variable(utils.sequence_mask(torch.LongTensor([5,3]))), softmax=True)
    print(vector_sequence_attention)
    print(sequence_attention_weights)
            if not self.training:
                sequence_selfattn_weights[
                    ith_item] = sequence_attention_weights

        sequence_sequence_selfattn = sequence_sequence_selfattn.permute(
            1, 0, 2)
        if not self.training:
            sequence_selfattn_weights = sequence_selfattn_weights.permute(
                1, 0, 2)
        #sequence_mask: batch_size*num_words
        sequence_sequence_selfattn = utils.mask_sequence(
            sequence_sequence_selfattn, sequence_mask)
        if not self.training:
            sequence_selfattn_weights = utils.mask_sequence(
                sequence_selfattn_weights, sequence_mask)
        #sequence_sequence_selfattn: batch_size*num_words*iembed
        #sequence_selfattn_weights: batch_size*num_words*num_words
        return sequence_sequence_selfattn, sequence_selfattn_weights


if __name__ == '__main__':
    selfattn = SelfAttention({
        'similarity_function': 'WeightedSumProjection',
        'sequence_dim': 10,
        'projection_dim': 10
    })
    sequence_sequence_selfattn, sequence_selfattn_weights =\
     selfattn(Variable(torch.randn(3,6,10)), Variable(utils.sequence_mask(torch.LongTensor([5,3,6]))))
    print(sequence_sequence_selfattn)
    print(sequence_selfattn_weights)
                               h_t)  #h_t: batch_size*hidden_dim
            elif self.rnn_type == 'RNN':
                pass
            pointer_sequence_attention_weights[
                step] = sequence_attention_weights

        pointer_sequence_attention_weights = pointer_sequence_attention_weights.permute(
            1, 0, 2)

        return pointer_sequence_attention_weights  #batch_size*num_steps*num_words


if __name__ == '__main__':
    '''ptrnet = PointerNetwork({'similarity_function': 'WeightedSumProjection', 'sequence_dim':15, 'projection_dim':10, 'rnn_type':'GRU', 'rnn_hdim':15})
	pointer_sequence_attention_weights =\
		ptrnet(Variable(torch.randn(3,6,15)), Variable(torch.randn(3,15)),\
		Variable(utils.sequence_mask(torch.LongTensor([5,3,6]))), 2)
	print(pointer_sequence_attention_weights)'''

    ptrnet = PointerNetwork({
        'similarity_function': 'WeightedSumProjection',
        'sequence_dim': 15,
        'projection_dim': 10,
        'rnn_type': 'GRU',
        'rnn_hdim': 15
    })
    pointer_sequence_attention_weights =\
     ptrnet(Variable(torch.randn(3,6,15)), Variable(torch.randn(1,15).expand(3,15)),\
     Variable(utils.sequence_mask(torch.LongTensor([5,3,6]))), 2)
    print(pointer_sequence_attention_weights)
Exemple #8
0
    def forward(self, passage, passage_lengths, passagechars, passagechar_lengths,\
       question, question_lengths, questionchars, questionchar_lengths):
        #passage: batch_size*num_words_passage*wembdim
        #passage_lengths: batch_size
        #passagechars: batch_size*num_words_passage*num_max_chars
        #passagechar_lengths: batch_size*num_words_passage

        #question: batch_size*num_words_question*wembdim
        #question_lengths: batch_size
        #questionchars: batch_size*num_words_question*num_max_chars
        #questionchar_lengths: batch_size*num_words_question

        passage_embedding = passage[:, 0:passage_lengths.max()]
        question_embedding = question[:, 0:question_lengths.max()]
        passage_mask = Variable(utils.sequence_mask(
            passage_lengths))  #passage_mask: batch_size*num_words_passage
        question_mask = Variable(utils.sequence_mask(
            question_lengths))  #question_mask: batch_size*num_words_question

        ##### Character Embedding Layer
        if self.use_charemb:
            passage_char_embedding = self.charemb_layer(
                passagechars, passagechar_lengths)
            #passage_char_embedding: batch_size*num_words_passage*2.charemb_rnn_hdim
            question_char_embedding = self.charemb_layer(
                questionchars, questionchar_lengths)
            #question_char_embedding: batch_size*num_words_question*2.charemb_rnn_hdim

            ##### Char and Word Embedding Concatenation
            passage_embedding = torch.cat((passage, passage_char_embedding),
                                          dim=2)
            question_embedding = torch.cat((question, question_char_embedding),
                                           dim=2)
            passage_embedding = passage_embedding[:, 0:passage_lengths.max()]
            question_embedding = question_embedding[:,
                                                    0:question_lengths.max()]
            passage_embedding = utils.mask_sequence(passage_embedding,
                                                    passage_mask)
            question_embedding = utils.mask_sequence(question_embedding,
                                                     question_mask)
            #passage_embedding: batch_size*num_words_passage*(2.charemb_rnn_hdim+wembdim)
            #question_embedding: batch_size*num_words_question*(2.charemb_rnn_hdim+wembdim)

        ##### Context Embedding Layer
        #passage_embedding, passage_lengths = self.contextemb_layer(passage_embedding, passage_lengths)
        #question_embedding, question_lengths = self.contextemb_layer(question_embedding, question_lengths)
        passage_embedding, _ = self.contextemb_layer(passage_embedding,
                                                     passage_lengths)
        question_embedding, _ = self.contextemb_layer(question_embedding,
                                                      question_lengths)
        #passage_embedding: batch_size*num_words_passage*2.contextemb_rnn_hdim
        #question_embedding: batch_size*num_words_question*2.contextemb_rnn_hdim
        #Skipping recomputation of passage_mask and question_mask

        ##### BiDAF Layer
        passage_question_attention, question_attention_weights, question_passage_attention, passage_attention_weights =\
         self.bidaf_layer(passage_embedding, question_embedding, passage_mask, question_mask)
        #passage_question_attention: batch_size*num_words_passage*2.contextemb_rnn_hdim
        #question_attention_weights: batch_size*num_words_passage*num_words_question
        #question_passage_attention: batch_size*2.contextemb_rnn_hdim
        #passage_attention_weights: batch_size*num_words_passage

        question_passage_attention = question_passage_attention.unsqueeze(
            1)  #question_passage_attention: batch_size*1*2.contextemb_rnn_hdim
        question_passage_attention = question_passage_attention.expand(
            question_passage_attention.size(0),
            passage_question_attention.size(1),
            question_passage_attention.size(2))
        #question_passage_attention: batch_size*num_words_passage*2.contextemb_rnn_hdim
        #passage_question_attention: batch_size*num_words_passage*2.contextemb_rnn_hdim

        #Skipping masking for passage_question_attention, question_passage_attention

        question_aware_passage_representation = torch.cat((passage_embedding,\
                       passage_question_attention,\
                       passage_embedding*passage_question_attention,\
                       passage_embedding*question_passage_attention), dim = -1)
        #question_aware_passage_representation: batch_size*num_words_passage*8.contextemb_rnn_hdim

        if self.use_dropout:
            question_aware_passage_representation = self.dropout_layer(
                question_aware_passage_representation)

        question_aware_passage_context_representation_one, _ = self.modeling_layer_one(
            question_aware_passage_representation, passage_lengths)
        #question_aware_passage_context_representation_one: batch_size*num_words_passage*2.modelinglayer_rnn_hdim
        if self.use_dropout:
            question_aware_passage_context_representation_one = self.dropout_layer(
                question_aware_passage_context_representation_one)

        question_aware_passage_context_representation_two, _ = self.modeling_layer_two(
            question_aware_passage_context_representation_one, passage_lengths)
        #question_aware_passage_context_representation_two: batch_size*num_words_passage*2.modelinglayer_rnn_hdim
        if self.use_dropout:
            question_aware_passage_context_representation_two = self.dropout_layer(
                question_aware_passage_context_representation_two)


        start_index_representation = torch.cat((question_aware_passage_representation,\
                  question_aware_passage_context_representation_one), dim = -1)
        end_index_representation = torch.cat((question_aware_passage_representation,\
                   question_aware_passage_context_representation_two), dim = -1)
        #start_index_representation: batch_size*num_words_passage*(8.contextemb_rnn_hdim + 2.modelinglayer_rnn_hdim)
        #end_index_representation: batch_size*num_words_passage*(8.contextemb_rnn_hdim + 2.modelinglayer_rnn_hdim)

        start_index_values = self.start_index_linear(
            start_index_representation).squeeze()
        end_index_values = self.end_index_linear(
            end_index_representation).squeeze()
        '''#start_index_probabilities: batch_size*num_words_passage
		#end_index_probabilities: batch_size*num_words_passage
		start_index_probabilities = utils.masked_softmax(start_index_values, passage_mask.float())
		end_index_probabilities = utils.masked_softmax(end_index_values, passage_mask.float())'''

        start_index_log_probabilities = start_index_values + passage_mask.float(
        ).log()
        end_index_log_probabilities = end_index_values + passage_mask.float(
        ).log()
        start_index_log_probabilities = functional.log_softmax(
            start_index_log_probabilities)
        end_index_log_probabilities = functional.log_softmax(
            end_index_log_probabilities)
        #start_index_log_probabilities: batch_size*num_words_passage
        #end_index_log_probabilities: batch_size*num_words_passage

        #uncomment the below line in compare mode
        #return start_index_log_probabilities, end_index_log_probabilities, question_attention_weights
        return start_index_log_probabilities, end_index_log_probabilities
				h_t, c_t = self.rnn(input, (h_t, c_t)) #h_t: batch_size*hidden_dim
				if reverse:
					h_t = utils.mask_sequence(h_t, hidden_mask)
					c_t = utils.mask_sequence(c_t, hidden_mask)
			elif self.rnn_type == 'GRU':
				h_t = self.rnn(input, h_t) #h_t: batch_size*hidden_dim
				if reverse:
					h_t = utils.mask_sequence(h_t, hidden_mask)
			elif self.rnn_type == 'RNN':
				pass
			sequence1_sequence2_matchattn[ith_item] = h_t
			if not self.training: sequence2_matchattn_weights[ith_item] = sequence2_attention_weights

		sequence1_sequence2_matchattn = sequence1_sequence2_matchattn.permute(1,0,2)
		if not self.training: sequence2_matchattn_weights = sequence2_matchattn_weights.permute(1,0,2)
		sequence1_mask = sequence1_mask.permute(1,0) #sequence1_mask: batch_size*num_words1
		sequence1_sequence2_matchattn = utils.mask_sequence(sequence1_sequence2_matchattn, sequence1_mask)
		if not self.training: sequence2_matchattn_weights = utils.mask_sequence(sequence2_matchattn_weights, sequence1_mask)
		#sequence1_sequence2_matchattn: batch_size*num_words1*hidden_dim
		#sequence2_matchattn_weights: batch_size*num_words1*num_words2
		return sequence1_sequence2_matchattn, sequence2_matchattn_weights

if __name__=='__main__':
	matchattn = MatchAttention({'similarity_function': 'WeightedSumProjection', 'sequence1_dim':12, 'sequence2_dim':8, 'projection_dim':10, 'rnn_type':'LSTM', 'rnn_hdim':15, 'gated_attention':True})
	sequence1_sequence2_matchattn, sequence2_matchattn_weights =\
		matchattn(Variable(torch.randn(3,6,12)), Variable(torch.randn(3,4,8)),\
		Variable(utils.sequence_mask(torch.LongTensor([5,3,6]))), Variable(utils.sequence_mask(torch.LongTensor([4,3,2]))), reverse=True)
	print(sequence1_sequence2_matchattn)
	print(sequence2_matchattn_weights)

Exemple #10
0
def train():
    cur_dir = os.getcwd()
    input_dir = 'input'
    glove_dir = '../SQUAD/glove/'
    glove_filename = 'glove.6B.50d.txt'
    glove_embdim = 50
    glove_filepath = os.path.join(glove_dir, glove_filename)

    train_batch_size = 2
    eval_batch_size = 1

    file_names = [('MSRVTT/captions.json', 'MSRVTT/trainvideo.json',
                   'MSRVTT/Frames')]
    files = [[os.path.join(cur_dir, input_dir, filetype) for filetype in file]
             for file in file_names]
    train_dataloader, vocab, glove, train_data_size = loader.get_train_data(
        files, glove_filepath, glove_embdim, train_batch_size)

    file_names = [('MSRVTT/captions.json', 'MSRVTT/valvideo.json',
                   'MSRVTT/Frames')]
    files = [[os.path.join(cur_dir, input_dir, filetype) for filetype in file]
             for file in file_names]
    val_dataloader = loader.get_val_data(files, vocab, glove, eval_batch_size)

    save_dir = 'models/baseline/'
    save_dir_path = os.path.join(cur_dir, save_dir)
    if not os.path.exists(save_dir_path):
        os.makedirs(save_dir_path)

    glovefile = open(os.path.join(save_dir, 'glove.pkl'), 'wb')
    pickle.dump(glove, glovefile)
    glovefile.close()

    vocabfile = open(os.path.join(save_dir, 'vocab.pkl'), 'wb')
    pickle.dump(vocab, vocabfile)
    vocabfile.close()

    pretrained_wordvecs = glove.index2vec
    dict_args = {
        "intermediate_layers": ['layer4', 'fc'],
        "word_embeddings": pretrained_wordvecs,
        "pretrained_embdim": glove_embdim,
        "vocabulary_size": len(pretrained_wordvecs),
        "decoder_rnn_hidden_dim": glove_embdim,
        "decoder_tie_weights": True,
        "decoder_rnn_type": 'LSTM',
        "pretrained_feature_size": 1000
    }
    csal = CSAL(dict_args)

    num_epochs = 4
    learning_rate = 1.0
    criterion = nn.NLLLoss(reduce=False)
    optimizer = optim.Adadelta(filter(lambda p: p.requires_grad,
                                      csal.parameters()),
                               lr=learning_rate,
                               rho=0.9,
                               eps=1e-06,
                               weight_decay=0)
    if USE_CUDA:
        csal = csal.cuda()
        criterion = criterion.cuda()

    for epoch in range(num_epochs):

        for i, batch in enumerate(train_dataloader):

            #######Load Data
            padded_imageframes_batch = Variable(torch.stack(
                batch[0]))  #batch_size*num_frames*3*224*224
            frame_sequence_lengths = Variable(torch.LongTensor(
                batch[1]))  #batch_size
            padded_inputwords_batch = Variable(torch.LongTensor(
                batch[2]))  #batch_size*num_words
            input_sequence_lengths = Variable(torch.LongTensor(
                batch[3]))  #batch_size
            padded_outputwords_batch = Variable(torch.LongTensor(
                batch[4]))  #batch_size*num_words
            output_sequence_lengths = Variable(torch.LongTensor(
                batch[5]))  #batch_size
            video_ids_list = batch[6]
            captionwords_mask = Variable(
                utils.sequence_mask(
                    output_sequence_lengths))  #batch_size*num_words
            if USE_CUDA:
                padded_imageframes_batch = padded_imageframes_batch.cuda()
                frame_sequence_lengths = frame_sequence_lengths.cuda()
                padded_inputwords_batch = padded_inputwords_batch.cuda()
                input_sequence_lengths = input_sequence_lengths.cuda()
                padded_outputwords_batch = padded_outputwords_batch.cuda()
                output_sequence_lengths = output_sequence_lengths.cuda()
                captionwords_mask = captionwords_mask.cuda()

            #######Forward
            csal = csal.train()
            optimizer.zero_grad()
            outputword_log_probabilities = csal(padded_imageframes_batch, frame_sequence_lengths, \
                     padded_inputwords_batch, input_sequence_lengths)

            #######Calculate Loss
            outputword_log_probabilities = outputword_log_probabilities.permute(
                0, 2, 1)
            #outputword_log_probabilities: batch_size*vocab_size*num_words
            #padded_outputwords_batch: batch_size*num_words
            losses = criterion(outputword_log_probabilities,
                               padded_outputwords_batch)
            #loss: batch_size*num_words
            losses = losses * captionwords_mask.float()
            loss = losses.sum()

            #######Backward
            loss.backward()
            optimizer.step()

            if ((i + 1) % 2 == 0):
                print('Epoch: [{0}/{1}], Step: [{2}/{3}], Loss: {4}'.format( \
                   epoch+1, num_epochs, i+1, train_data_size//train_batch_size, loss.data[0]))

                break

        if (epoch % 1 == 0):  #After how many epochs
            #Get Validation Loss to stop overriding
            val_loss, bleu = evaluator.evaluate(val_dataloader, csal)
            #print("val_loss")
            #Early Stopping not required
            filename = 'csal' + '.pth'
            file = open(os.path.join(save_dir, filename), 'wb')
            torch.save(
                {
                    'state_dict': csal.state_dict(),
                    'dict_args': dict_args
                }, file)
            print('Saving the model to {}'.format(save_dir))
            file.close()
Exemple #11
0
    def forward(self, videoframes, videoframes_lengths, inputwords,
                captionwords_lengths):
        #videoframes : batch_size*num_frames*3*224*224
        #videoframes_lengths : batch_size
        #inputwords : batch_size*num_words
        #outputwords : batch_size*num_words
        #captionwords_lengths : batch_size

        videoframes = videoframes[:,
                                  0:videoframes_lengths.data.max()].contiguous(
                                  )

        videoframes_mask = Variable(utils.sequence_mask(videoframes_lengths))
        #videoframes_mask: batch_size*num_frames

        #redundant because we are masking the loss
        #captionwords_mask = Variable(utils.sequence_mask(captionwords_lengths))
        #captionwords_mask: batch_size*num_words

        #batch_size, num_frames, rgb, height, width = videoframes.size()
        #videoframes = videoframes.view(-1,rgb,height,width).contiguous()
        #videoframes : batch_size.num_frames*3*224*224
        #videoframefeatures = self.pretrained_vision_layer(videoframes)
        #videoframefeatures_fc = videoframefeatures[1]
        #videoframefeatures_fc : batch_size.num_frames*1000

        videoframes = videoframes.contiguous()
        batch_size, num_frames, num_features, H, W = videoframes.size()

        if H == 1:
            videoframefeatures_fc = videoframes.view(
                -1, num_features).contiguous()
            videoframefeatures_fc = self.vision_feature_dimred_layer(
                videoframefeatures_fc)
            #videoframefeatures_fc : batch_size.num_frames*rnn_hdim
            _, feature_dim = videoframefeatures_fc.size()
            videoframefeatures_fc = videoframefeatures_fc.view(
                batch_size, num_frames, feature_dim)
            #videoframefeatures_fc : batch_size*num_frames*1000
            videoframefeatures_fc = utils.mask_sequence(
                videoframefeatures_fc, videoframes_mask)
        else:
            videoframefeatures_fc = videoframes

        inputword_vectors = self.pretrained_words_layer(inputwords)
        #inputword_vectors: batch_size*num_words*wembed_dim

        if not self.training:
            return self.sentence_decoder_layer.inference(
                self.frame_encoder_layer, videoframefeatures_fc,
                videoframes_lengths, self.pretrained_words_layer)

        #outputword_values = self.sentence_decoder_layer(inputword_vectors, videoframefeatures_fcmeanpooling, captionwords_mask)
        outputword_log_probabilities = self.sentence_decoder_layer(
            inputword_vectors, self.frame_encoder_layer, videoframefeatures_fc,
            videoframes_lengths)
        #outputword_values = batch_size*num_words*vocab_size

        # outputword_log_probabilities = functional.log_softmax(outputword_values, dim=2)
        #outputword_values = batch_size*num_words*vocab_size

        #outputword_log_probabilities = utils.mask_sequence(outputword_log_probabilities, captionwords_mask)

        return outputword_log_probabilities  #batch_size*num_words*vocab_size
	def forward(self, isequence, ilenghts, spatialqueryvector = None, temporalqueryvector = None):
		#isequence : batch_size*num_frames*C*H*W
		#ilenghts : batch_size
		#spatialqueryvector Attention over the frames of the video
		#temporalqueryvector Attention over hidden states of tracking LSTM

		contextvector, temporalvectors, spatialvectors = None, None, None
		
		isequence = self.dropout_layer(isequence)		

		batch_size, num_frames, channel_dim, height, width = isequence.size()
		isequence = isequence.view(batch_size, num_frames, channel_dim, -1)
		#isequence : batch_size*num_frames*channel_dim*num_blocks
		isequence = isequence.permute(1, 0, 3, 2)
		#isequence : num_frames*batch_size*num_blocks*channel_dim
		num_blocks = isequence.size(2)

		if self.use_linear:
			isequence = functional.relu(self.linear(isequence))

		#Dropout?
	
		if self.temporalattention:
			temporalvectors = Variable(isequence.data.new(num_frames, batch_size, self.context_dim).zero_())

		if self.recurrent:
			h_t = spatialqueryvector
			if self.rnn_type == 'LSTM': c_t = self.init_hidden(batch_size)

			for step in range(num_frames):
				spatialvectors = isequence[step] #fsequence: batch_size*num_blocks*channel_dim
				slenghts = ilenghts.data.new(batch_size).zero_() + num_blocks
				smask = Variable(utils.sequence_mask(Variable(slenghts)))
				spatattnvector, spatattnweights = self.spatial_attention_function(spatialvectors, h_t, smask)
				#print(spatattnweights)

				if self.rnn_type == 'LSTM':
					h_t, c_t = self.trackrnn(spatattnvector, (h_t, c_t)) #h_t: batch_size*hidden_dim
				elif self.rnn_type == 'GRU':
					h_t = self.trackrnn(spatattnvector, h_t) #h_t: batch_size*hidden_dim
				elif self.rnn_type == 'RNN':
					pass

				if self.temporalattention: temporalvectors[step] = h_t
			contextvector = h_t		
		else:

			for step in range(num_frames):
				spatialvectors = isequence[step] #fsequence: batch_size*num_blocks*channel_dim
				slenghts = ilenghts.data.new(batch_size).zero_() + num_blocks
				smask = Variable(utils.sequence_mask(Variable(slenghts)))
				spatattnvector, spatattnweights = self.spatial_attention_function(spatialvectors, spatialqueryvector, smask)
				#print(spatattnweights)

				temporalvectors[step] = spatattnvector
			contextvector = None #Should undergo temporal attention


		if self.temporalattention:
			imask = Variable(utils.sequence_mask(ilenghts))
			temporalvectors = temporalvectors.permute(1, 0, 2)
			#temporalvectors: batch_size*num_frames*context_dim

			tempattnvector, tempattnweights = self.temporal_attention_function(temporalvectors, temporalqueryvector, imask)
			contextvector = tempattnvector
			#print(tempattnweights)

		return contextvector
Exemple #13
0
    def forward(self, passage, passage_lengths, passagechars, passagechar_lengths,\
       question, question_lengths, questionchars, questionchar_lengths):
        #passage: batch_size*num_words_passage*wembdim
        #passage_lengths: batch_size
        #passagechars: batch_size*num_words_passage*num_max_chars
        #passagechar_lengths: batch_size*num_words_passage

        #question: batch_size*num_words_question*wembdim
        #question_lengths: batch_size
        #questionchars: batch_size*num_words_question*num_max_chars
        #questionchar_lengths: batch_size*num_words_question

        passage_embedding = passage[:, 0:passage_lengths.max()]
        question_embedding = question[:, 0:question_lengths.max()]
        passage_mask = Variable(utils.sequence_mask(
            passage_lengths))  #passage_mask: batch_size*num_words_passage
        question_mask = Variable(utils.sequence_mask(
            question_lengths))  #question_mask: batch_size*num_words_question

        ##### Character Embedding Layer
        if self.use_charemb:
            passage_char_embedding = self.charemb_layer(
                passagechars, passagechar_lengths)
            #passage_char_embedding: batch_size*num_words_passage*2.charemb_rnn_hdim
            question_char_embedding = self.charemb_layer(
                questionchars, questionchar_lengths)
            #question_char_embedding: batch_size*num_words_question*2.charemb_rnn_hdim

            ##### Char and Word Embedding Concatenation
            passage_embedding = torch.cat((passage, passage_char_embedding),
                                          dim=2)
            question_embedding = torch.cat((question, question_char_embedding),
                                           dim=2)
            passage_embedding = passage_embedding[:, 0:passage_lengths.max()]
            question_embedding = question_embedding[:,
                                                    0:question_lengths.max()]
            passage_embedding = utils.mask_sequence(passage_embedding,
                                                    passage_mask)
            question_embedding = utils.mask_sequence(question_embedding,
                                                     question_mask)
            #passage_embedding: batch_size*num_words_passage*(2.charemb_rnn_hdim+wembdim)
            #question_embedding: batch_size*num_words_question*(2.charemb_rnn_hdim+wembdim)

        ##### Context Embedding Layer
        #passage_embedding, passage_lengths = self.contextemb_layer(passage_embedding, passage_lengths)
        #question_embedding, question_lengths = self.contextemb_layer(question_embedding, question_lengths)
        passage_embedding, _ = self.contextemb_layer(passage_embedding,
                                                     passage_lengths)
        question_embedding, _ = self.contextemb_layer(question_embedding,
                                                      question_lengths)
        #passage_embedding: batch_size*num_words_passage*2.contextemb_rnn_hdim
        #question_embedding: batch_size*num_words_question*2.contextemb_rnn_hdim
        #Skipping recomputation of passage_mask and question_mask

        passage_question_matchattn_forward, question_matchattn_weights_forward = \
         self.gated_attention_layer_forward(passage_embedding, question_embedding, passage_mask, question_mask)
        #passage_question_matchattn_forward: batch_size*num_words_passage*2.contextemb_rnn_hdim
        #question_matchattn_weights_forward: batch_size*num_words_passage*num_words_question
        passage_question_matchattn = passage_question_matchattn_forward
        if self.use_bidirectional:
            passage_question_matchattn_reverse, question_matchattn_weights_reverse = \
             self.gated_attention_layer_backward(utils.reverse_sequence(passage_embedding), question_embedding,\
                      utils.reverse_sequence(passage_mask), question_mask, reverse=True)
            passage_question_matchattn_reverse = utils.reverse_sequence(
                passage_question_matchattn_reverse)
            if not self.training:
                question_matchattn_weights_reverse = utils.reverse_sequence(
                    question_matchattn_weights_reverse)
            #passage_question_matchattn_reverse: batch_size*num_words_passage*2.contextemb_rnn_hdim
            passage_question_matchattn = torch.cat(
                (passage_question_matchattn_forward,
                 passage_question_matchattn_reverse),
                dim=-1)
            #passage_question_matchattn: batch_size*num_words_passage*4.contextemb_rnn_hdim

        question_aware_passage_representation = passage_question_matchattn

        if self.use_selfmatching:
            passage_passage_selfattn, passage_selfattn_weights = \
             self.self_matching_layer(passage_question_matchattn, passage_mask)
            #passage_passage_selfattn: batch_size*num_words_passage*2.contextemb_rnn_hdim
            #passage_selfattn_weights: batch_size*num_words_passage*num_words_passage
            #Skipping masking for passage_passage_selfattn
            question_aware_passage_representation = torch.cat(
                (passage_question_matchattn, passage_passage_selfattn), dim=-1)

        #if self.use_dropout: question_aware_passage_representation = self.dropout_layer(question_aware_passage_representation)
        if self.gated_selfmatching:
            question_aware_passage_representation = self.selfmatchinggate(
                question_aware_passage_representation,
                question_aware_passage_representation)

        question_aware_passage_representation, _ = self.modeling_layer(
            question_aware_passage_representation, passage_lengths)
        #question_aware_passage_representation: batch_size*num_words_passage*2.self.modelinglayer_rnn_hdim

        if self.use_dropout:
            question_aware_passage_representation = self.dropout_layer(
                question_aware_passage_representation)

        self.question_query_vector_expand = self.question_query_vector.unsqueeze(
            0).expand(question_embedding.size(0),
                      self.question_query_vector.size(0))
        #self.question_query_vector_expand: batch_size*2.self.contextemb_rnn_hdim	(question_query_vector_dim = 2.self.contextemb_rnn_hdim)
        queryvector_question_attention, question_attention_weights = \
         self.question_attention_layer(question_embedding, self.question_query_vector_expand, question_mask)
        #queryvector_question_attention: batch_size*2.contextemb_rnn_hdim
        #question_attention_weights: batch_size*num_words_question

        pointer_passage_attention_values = \
         self.pointer_network_layer(question_aware_passage_representation, queryvector_question_attention, passage_mask, 2)
        #pointer_passage_attention_probabilities: batch_size*2*num_words_passage

        start_index_values, end_index_values = torch.chunk(
            pointer_passage_attention_values, 2, 1)
        start_index_values = start_index_values.squeeze()
        end_index_values = end_index_values.squeeze()
        '''start_index_probabilities = utils.masked_softmax(start_index_values, passage_mask.float())
		end_index_probabilities = utils.masked_softmax(end_index_values, passage_mask.float())'''

        start_index_log_probabilities = start_index_values + passage_mask.float(
        ).log()
        end_index_log_probabilities = end_index_values + passage_mask.float(
        ).log()
        start_index_log_probabilities = functional.log_softmax(
            start_index_log_probabilities)
        end_index_log_probabilities = functional.log_softmax(
            end_index_log_probabilities)
        #start_index_log_probabilities: batch_size*num_words_passage
        #end_index_log_probabilities: batch_size*num_words_passage

        #uncomment the below line in compare mode
        #return start_index_log_probabilities, end_index_log_probabilities, (question_matchattn_weights_forward + question_matchattn_weights_reverse)/2
        return start_index_log_probabilities, end_index_log_probabilities