def __init__(self, problem, state, serialize=True, ignore_mutexes=False): """ Parameters ---------- problem : PlanningProblem An instance of the PlanningProblem class state : tuple(bool) An ordered sequence of True/False values indicating the literal value of the corresponding fluent in problem.state_map serialize : bool Flag indicating whether to serialize non-persistence actions. Actions should NOT be serialized for regression search (e.g., GraphPlan), and _should_ be serialized if the planning graph is being used to estimate a heuristic """ self._serialize = serialize self._is_leveled = False self._ignore_mutexes = ignore_mutexes self.goal = set(problem.goal) # make no-op actions that persist every literal to the next layer no_ops = [ make_node(n, no_op=True) for n in chain(*(makeNoOp(s) for s in problem.state_map)) ] self._actionNodes = no_ops + [ make_node(a) for a in problem.actions_list ] # initialize the planning graph by finding the literals that are in the # first layer and finding the actions they they should be connected to literals = [s if f else ~s for f, s in zip(state, problem.state_map)] layer = LiteralLayer(literals, ActionLayer(), self._ignore_mutexes) layer.update_mutexes() self.literal_layers = [layer] self.action_layers = []
def setUp(self): self.cake_problem = have_cake() self.cake_pg = PlanningGraph(self.cake_problem, self.cake_problem.initial, serialize=False).fill() eat_action, bake_action = [ a for a in self.cake_pg._actionNodes if not a.no_op ] no_ops = [a for a in self.cake_pg._actionNodes if a.no_op] # bake has the effect Have(Cake) which is the logical negation of the effect # ~Have(cake) from the persistence action ~NoOp::Have(cake) self.inconsistent_effects_actions = [bake_action, no_ops[3]] # the persistence action ~NoOp::Have(cake) has the effect ~Have(cake), which is # the logical negation of Have(cake) -- the precondition for the Eat(cake) action self.interference_actions = [eat_action, no_ops[3]] # eat has precondition Have(cake) and bake has precondition ~Have(cake) # which are logical inverses, so eat & bake should be mutex at every # level of the planning graph where both actions appear self.competing_needs_actions = [eat_action, bake_action] self.ac_problem = air_cargo_p1() self.ac_pg_serial = PlanningGraph(self.ac_problem, self.ac_problem.initial).fill() # In(C1, P2) and In(C2, P1) have inconsistent support when they first appear in # the air cargo problem, self.inconsistent_support_literals = [ expr("In(C1, P2)"), expr("In(C2, P1)") ] # some independent nodes for testing mutexes at_here = expr('At(here)') at_there = expr('At(there)') self.pos_literals = [at_here, at_there] self.neg_literals = [~x for x in self.pos_literals] self.literal_layer = LiteralLayer( self.pos_literals + self.neg_literals, ActionLayer()) self.literal_layer.update_mutexes() # independent actions for testing mutex self.actions = [ make_node( Action(expr('Go(here)'), [set(), set()], [set([at_here]), set()])), make_node( Action(expr('Go(there)'), [set(), set()], [set([at_there]), set()])) ] self.no_ops = [ make_node(x) for x in chain(*(makeNoOp(l) for l in self.pos_literals)) ] self.action_layer = ActionLayer(self.no_ops + self.actions, self.literal_layer) self.action_layer.update_mutexes() for action in self.no_ops + self.actions: self.action_layer.add_inbound_edges(action, action.preconditions) self.action_layer.add_outbound_edges(action, action.effects) # competing needs tests -- build two copies of the planning graph: one where # A, B, and C are pairwise mutex, and another where they are not A, B, C = expr('A'), expr('B'), expr('C') self.fake_competing_needs_actions = [ make_node( Action(expr('FakeAction(A)'), [set([A]), set()], [set([A]), set()])), make_node( Action(expr('FakeAction(B)'), [set([B]), set()], [set([B]), set()])), make_node( Action(expr('FakeAction(C)'), [set([C]), set()], [set([C]), set()])) ] competing_layer = LiteralLayer([A, B, C], ActionLayer()) for a1, a2 in combinations([A, B, C], 2): competing_layer.set_mutex(a1, a2) self.competing_action_layer = ActionLayer(competing_layer.parent_layer, competing_layer, False, True) for action in self.fake_competing_needs_actions: self.competing_action_layer.add(action) competing_layer |= action.effects competing_layer.add_outbound_edges(action, action.preconditions) self.competing_action_layer.add_inbound_edges( action, action.preconditions) self.competing_action_layer.add_outbound_edges( action, action.effects) not_competing_layer = LiteralLayer([A, B, C], ActionLayer()) self.not_competing_action_layer = ActionLayer( not_competing_layer.parent_layer, not_competing_layer, False, True) for action in self.fake_competing_needs_actions: self.not_competing_action_layer.add(action) not_competing_layer |= action.effects not_competing_layer.add_outbound_edges(action, action.preconditions) self.not_competing_action_layer.add_inbound_edges( action, action.preconditions) self.not_competing_action_layer.add_outbound_edges( action, action.effects)