Exemple #1
0
    def test_variable_dict(self):
        xv = np.array([0.5, 0.1, 0.5])
        yv = np.array([0.2, 0.4, 0.5])
        valin = ['x', 'y']
        x = Input(valin, 'x')
        y = Input(valin, 'y')
        xyv = [xv, yv]
        Wxv = np.array([[2.1, 3.1, 2.2], [2.2, 3.2, 4.2], [2.2, 5.2, 4.2]])
        Wyv = np.array([[2.1, 2.1, 2.2], [1.6, 1.2, 6.2], [2.1, 3.1, 2.2]])
        Wx = MWeight(3, 3, weights=Wxv)
        Wy = MWeight(3, 3, weights=Wyv)

        net = ComputationalGraphLayer(Sigmoid(Wx.dot(x)) + Tanh(Wy.dot(y)))
        netDict = Sequential(VariableDictLayer(valin), net)
        out = net.forward(xyv)
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, sigmoid(Wxv.dot(xv)) + np.tanh(Wyv.dot(yv)))
        dJdy = net.backward(np.array([1.0, 1.0, 1.0]))

        self.assertEqual(len(dJdy), 2)
        for ind, key in enumerate(dJdy):
            self.assertEqual(dJdy[ind].shape, xyv[ind].shape)
            assert_almost_equal(dJdy[ind],
                                np.sum(net.numeric_gradient(xyv)[ind], 0))

        auxdict = {'x': 0, 'y': 1}
        out = netDict.forward({'x': xv, 'y': yv})
        self.assertEqual(out.shape, (3, ))
        assert_almost_equal(out, sigmoid(Wxv.dot(xv)) + np.tanh(Wyv.dot(yv)))
        dJdy = netDict.backward(np.array([1.0, 1.0, 1.0]))
        self.assertEqual(len(dJdy), 2)
        for key in dJdy:
            self.assertEqual(dJdy[key].shape, xyv[auxdict[key]].shape)
            assert_almost_equal(
                dJdy[key], np.sum(net.numeric_gradient(xyv)[auxdict[key]], 0))
Exemple #2
0
    def test_neuron_one_input(self):
        xv = np.array([0.5, 0.1, 0.5])
        x = Input(['x'], 'x')
        Wv = np.array([[0.1, 0.1, 0.2], [0.5, 0.2, 0.2]])
        W = MWeight(3, 2, weights=Wv)
        bv = np.array([0.3, 0.1])
        b = VWeight(2, weights=bv)
        net = ComputationalGraphLayer(Sigmoid(W.dot(x) + b))
        out = net.forward(xv)
        self.assertEqual(out.shape, (2, ))
        check_out = 1.0 / (1.0 + np.exp(-Wv.dot(xv) - bv))
        assert_almost_equal(out, check_out)
        dJdy = net.backward(np.array([1.0, 1.0]))
        self.assertEqual(dJdy.shape, (3, ))
        assert_almost_equal(dJdy, np.sum(net.numeric_gradient(xv), 0))
        assert_almost_equal(dJdy, (check_out * (1 - check_out)).dot(Wv))

        net2 = Sequential(
            LinearLayer(3, 2, weights=np.hstack([Wv, bv.reshape(2, 1)])),
            SigmoidLayer)
        out2 = net2.forward(xv)
        assert_almost_equal(out, out2)
        dJdy2 = net.backward(np.array([1.0, 1.0]))
        assert_almost_equal(dJdy, dJdy2)