Exemple #1
0
    betweenE1E2 = cnnContext.getOutput(
        T.concatenate([e1_emb_repeated, x2_emb, e2_emb_repeated], axis=3))

    betweenE1E2flatten = betweenE1E2.flatten(2)

    # to predict r1: between e1 and e2
    hiddenForR1 = hiddenLayer.getOutput(betweenE1E2flatten)

else:
    # to predict r1: aroundE1 (x1 + e1 + x2) and aroundE2 (x2 + e2 + x3)
    hiddenForR1 = hiddenLayer.getOutput(
        T.concatenate([aroundE1, aroundE2], axis=1))

if doCRF:
    # scores for different classes for r1, r2 and r3
    scoresForR1 = outputLayer.getScores(hiddenForR1, numSamples, batchsizeVar)
    scoresForE1 = outputLayerET.getScores(hiddenForE1, numSamples,
                                          batchsizeVar)
    scoresForE2 = outputLayerET.getScores(hiddenForE2, numSamples,
                                          batchsizeVar)

    scores = T.zeros((batchsizeVar, 3, numClasses + numClassesET))
    scores = T.set_subtensor(scores[:, 0, numClasses:], scoresForE1)
    scores = T.set_subtensor(scores[:, 1, :numClasses], scoresForR1)
    scores = T.set_subtensor(scores[:, 2, numClasses:], scoresForE2)
    y_conc = T.concatenate([y1ET + numClasses, y, y2ET + numClasses], axis=1)
    cost = crfLayer.getCostAddLogWeights(scores, y_conc)
else:
    cost = outputLayer.getCostMI(hiddenForR1, y_resh, numSamples,
                                 batchsizeVar) + outputLayerET.getCostMI(
                                     hiddenForE1, y1ET_resh, numSamples,
    def __init__(self, configfile, train=False):

        self.slotList = [
            "N", "per:age", "per:alternate_names", "per:children",
            "per:cause_of_death", "per:date_of_birth", "per:date_of_death",
            "per:employee_or_member_of", "per:location_of_birth",
            "per:location_of_death", "per:locations_of_residence",
            "per:origin", "per:schools_attended", "per:siblings", "per:spouse",
            "per:title", "org:alternate_names", "org:date_founded",
            "org:founded_by", "org:location_of_headquarters", "org:members",
            "org:parents", "org:top_members_employees"
        ]

        typeList = [
            "O", "PERSON", "LOCATION", "ORGANIZATION", "DATE", "NUMBER"
        ]

        self.config = readConfig(configfile)

        self.addInputSize = 1
        logger.info("additional mlp input")

        wordvectorfile = self.config["wordvectors"]
        logger.info("wordvectorfile " + wordvectorfile)
        networkfile = self.config["net"]
        logger.info("networkfile " + networkfile)
        hiddenunits = int(self.config["hidden"])
        logger.info("hidden units " + str(hiddenunits))
        hiddenunitsNer = hiddenunits
        if "hiddenunitsNER" in self.config:
            hiddenunitsNer = int(self.config["hiddenunitsNER"])
        representationsizeNER = 50
        if "representationsizeNER" in self.config:
            representationsizeNER = int(self.config["representationsizeNER"])
        learning_rate = float(self.config["lrate"])
        logger.info("learning rate " + str(learning_rate))
        if train:
            self.batch_size = int(self.config["batchsize"])
        else:
            self.batch_size = 1
        logger.info("batch size " + str(self.batch_size))
        self.filtersize = [1, int(self.config["filtersize"])]
        nkerns = [int(self.config["nkerns"])]
        logger.info("nkerns " + str(nkerns))
        pool = [1, int(self.config["kmax"])]

        self.contextsize = int(self.config["contextsize"])
        logger.info("contextsize " + str(self.contextsize))

        if self.contextsize < self.filtersize[1]:
            logger.info("setting filtersize to " + str(self.contextsize))
            self.filtersize[1] = self.contextsize
        logger.info("filtersize " + str(self.filtersize))

        sizeAfterConv = self.contextsize - self.filtersize[1] + 1

        sizeAfterPooling = -1
        if sizeAfterConv < pool[1]:
            logger.info("setting poolsize to " + str(sizeAfterConv))
            pool[1] = sizeAfterConv
        sizeAfterPooling = pool[1]
        logger.info("kmax pooling: k = " + str(pool[1]))

        # reading word vectors
        self.wordvectors, self.vectorsize = readWordvectors(wordvectorfile)

        self.representationsize = self.vectorsize + 1

        rng = numpy.random.RandomState(
            23455
        )  # not relevant, parameters will be overwritten by stored model anyways
        if train:
            seed = rng.get_state()[1][0]
            logger.info("seed: " + str(seed))

        numSFclasses = 23
        numNERclasses = 6

        # allocate symbolic variables for the data
        self.index = T.lscalar()  # index to a [mini]batch
        self.xa = T.matrix('xa')  # left context
        self.xb = T.matrix('xb')  # middle context
        self.xc = T.matrix('xc')  # right context
        self.y = T.imatrix('y')  # label (only present in training)
        self.yNER1 = T.imatrix(
            'yNER1')  # label for first entity (only present in training)
        self.yNER2 = T.imatrix(
            'yNER2')  # label for second entity (only present in training)
        ishape = [self.representationsize,
                  self.contextsize]  # this is the size of context matrizes

        ######################
        # BUILD ACTUAL MODEL #
        ######################
        logger.info('... building the model')

        # Reshape input matrix to be compatible with LeNetConvPoolLayer
        layer0a_input = self.xa.reshape(
            (self.batch_size, 1, ishape[0], ishape[1]))
        layer0b_input = self.xb.reshape(
            (self.batch_size, 1, ishape[0], ishape[1]))
        layer0c_input = self.xc.reshape(
            (self.batch_size, 1, ishape[0], ishape[1]))

        y_reshaped = self.y.reshape((self.batch_size, 1))
        yNER1reshaped = self.yNER1.reshape((self.batch_size, 1))
        yNER2reshaped = self.yNER2.reshape((self.batch_size, 1))

        # Construct convolutional pooling layer:
        filter_shape = (nkerns[0], 1, self.representationsize,
                        self.filtersize[1])
        poolsize = (pool[0], pool[1])
        fan_in = numpy.prod(filter_shape[1:])
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
                   numpy.prod(poolsize))
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        # the convolution weight matrix
        convW = theano.shared(numpy.asarray(rng.uniform(low=-W_bound,
                                                        high=W_bound,
                                                        size=filter_shape),
                                            dtype=theano.config.floatX),
                              borrow=True)
        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0], ), dtype=theano.config.floatX)
        convB = theano.shared(value=b_values, borrow=True)

        self.layer0a = LeNetConvPoolLayer(rng,
                                          W=convW,
                                          b=convB,
                                          input=layer0a_input,
                                          image_shape=(self.batch_size, 1,
                                                       ishape[0], ishape[1]),
                                          filter_shape=filter_shape,
                                          poolsize=poolsize)
        self.layer0b = LeNetConvPoolLayer(rng,
                                          W=convW,
                                          b=convB,
                                          input=layer0b_input,
                                          image_shape=(self.batch_size, 1,
                                                       ishape[0], ishape[1]),
                                          filter_shape=filter_shape,
                                          poolsize=poolsize)
        self.layer0c = LeNetConvPoolLayer(rng,
                                          W=convW,
                                          b=convB,
                                          input=layer0c_input,
                                          image_shape=(self.batch_size, 1,
                                                       ishape[0], ishape[1]),
                                          filter_shape=filter_shape,
                                          poolsize=poolsize)

        layer0aflattened = self.layer0a.output.flatten(2).reshape(
            (self.batch_size, nkerns[0] * sizeAfterPooling))
        layer0bflattened = self.layer0b.output.flatten(2).reshape(
            (self.batch_size, nkerns[0] * sizeAfterPooling))
        layer0cflattened = self.layer0c.output.flatten(2).reshape(
            (self.batch_size, nkerns[0] * sizeAfterPooling))
        layer0outputSF = T.concatenate(
            [layer0aflattened, layer0bflattened, layer0cflattened], axis=1)
        layer0outputSFsize = 3 * (nkerns[0] * sizeAfterPooling)

        layer0outputNER1 = T.concatenate([layer0aflattened, layer0bflattened],
                                         axis=1)
        layer0outputNER2 = T.concatenate([layer0bflattened, layer0cflattened],
                                         axis=1)
        layer0outputNERsize = 2 * (nkerns[0] * sizeAfterPooling)

        layer2ner1 = HiddenLayer(rng,
                                 input=layer0outputNER1,
                                 n_in=layer0outputNERsize,
                                 n_out=hiddenunitsNer,
                                 activation=T.tanh)
        layer2ner2 = HiddenLayer(rng,
                                 input=layer0outputNER2,
                                 n_in=layer0outputNERsize,
                                 n_out=hiddenunitsNer,
                                 activation=T.tanh,
                                 W=layer2ner1.W,
                                 b=layer2ner1.b)

        # concatenate additional features to sentence representation
        self.additionalFeatures = T.matrix('additionalFeatures')
        self.additionalFeatsShaped = self.additionalFeatures.reshape(
            (self.batch_size, 1))

        layer2SFinput = T.concatenate(
            [layer0outputSF, self.additionalFeatsShaped], axis=1)
        layer2SFinputSize = layer0outputSFsize + self.addInputSize

        layer2SF = HiddenLayer(rng,
                               input=layer2SFinput,
                               n_in=layer2SFinputSize,
                               n_out=hiddenunits,
                               activation=T.tanh)

        # classify the values of the fully-connected sigmoidal layer
        layer3rel = LogisticRegression(input=layer2SF.output,
                                       n_in=hiddenunits,
                                       n_out=numSFclasses)
        layer3et = LogisticRegression(input=layer2ner1.output,
                                      n_in=hiddenunitsNer,
                                      n_out=numNERclasses)

        scoresForR1 = layer3rel.getScores(layer2SF.output)
        scoresForE1 = layer3et.getScores(layer2ner1.output)
        scoresForE2 = layer3et.getScores(layer2ner2.output)

        self.crfLayer = CRF(numClasses=numSFclasses + numNERclasses,
                            rng=rng,
                            batchsizeVar=self.batch_size,
                            sequenceLength=3)

        scores = T.zeros((self.batch_size, 3, numSFclasses + numNERclasses))
        scores = T.set_subtensor(scores[:, 0, numSFclasses:], scoresForE1)
        scores = T.set_subtensor(scores[:, 1, :numSFclasses], scoresForR1)
        scores = T.set_subtensor(scores[:, 2, numSFclasses:], scoresForE2)
        self.scores = scores

        self.y_conc = T.concatenate([
            yNER1reshaped + numSFclasses, y_reshaped,
            yNER2reshaped + numSFclasses
        ],
                                    axis=1)

        # create a list of all model parameters
        self.paramList = [
            self.crfLayer.params, layer3rel.params, layer3et.params,
            layer2SF.params, layer2ner1.params, self.layer0a.params
        ]
        self.params = []
        for p in self.paramList:
            self.params += p
            logger.info(p)

        if not train:
            self.gotNetwork = 1
            # load parameters
            if not os.path.isfile(networkfile):
                logger.error("network file does not exist")
                self.gotNetwork = 0
            else:
                save_file = open(networkfile, 'rb')
                for p in self.params:
                    p.set_value(cPickle.load(save_file), borrow=False)
                save_file.close()

        self.relation_scores_global = self.crfLayer.getProbForClass(
            self.scores, numSFclasses)
        self.predictions_global = self.crfLayer.getPrediction(self.scores)