Exemple #1
0
 def test_forward_backward(self):
     l = NormalizationLayer(np.array([0.0, 0.0, -5.0, -2.0]),
                            np.array([5.0, 5.0, 5.0, 2.0]),
                            np.array([-1.0, -1.0, -1.0, -1.0]),
                            np.array([1.0, 1.0, 1.0, 1.0]))
     y = l.forward(np.array([5.0, 4.0, -5.0, -1.0]))
     self.assertEqual(y.shape, (4, ))
     assert_almost_equal(y, np.array([1.0, 0.6, -1.0, -0.5]))
     x = np.random.rand(4)
     gradient = l.numeric_gradient(x)
     l.forward(x)
     d = l.backward([1, 1, 1, 1])
     self.assertEqual(d.shape, (4, ))
     assert_almost_equal(np.diag(gradient), d, decimal=5)
     return
Exemple #2
0
    p.draw_decision_surface(10, agent.Q, np.array([[0, 0], [5.0, 5.0]]))
    plt.show()
else:
    # norm = NormalizationLayer(
    #     np.array([0.0,0.0,0.0,-3.0,-3.0]),
    #     np.array([5.0,5.0,5.0,3.0,3.0]),
    #     np.array([-1.0,-1.0,-1.0,-1.0,-1.0]),
    #     np.array([1.0,1.0,1.0,1.0,1.0])
    # )
    # norm = NormalizationLayer(
    #     np.array([0.0,0.0,0.0,-3.0]),
    #     np.array([5.0,5.0,5.0,3.0]),
    #     np.array([-1.0,-1.0,-1.0,-1.0]),
    #     np.array([1.0,1.0,1.0,1.0])
    # )
    norm = NormalizationLayer(np.array([0.0, 0.0]), np.array([5.0, 5.0]),
                              np.array([0.0, 0.0]), np.array([1.0, 1.0]))
    W1 = utils.SharedWeights('gaussian', 2 + 1, 2)
    W2 = utils.SharedWeights('gaussian', 2 + 1, 3)
    Q = Sequential(
        norm,
        LinearLayer(2, 2, weights=W1),
        TanhLayer,
        LinearLayer(2, 3, weights=W2),
        # TanhLayer
    )
    W3 = utils.SharedWeights('gaussian', 2 + 1, 2)
    W4 = utils.SharedWeights('gaussian', 2 + 1, 3)
    # W3 = utils.SharedWeights(np.array([[10.0,-10.0,0.0],[-10.0,10.0,0.0]]),2+1,2)
    #W2 = utils.SharedWeights('gaussian',2+1,2)
    Q_hat = Sequential(
        norm,
Exemple #3
0
    img1 = ax.imshow(image1, cmap=plt.get_cmap('Greys'))
    ax1 = fig.add_subplot(1, 2, 2)
    img2 = ax1.imshow(image2, cmap=plt.get_cmap('Greys'))
    plt.show()


train = load_mnist_dataset("training", "mnist")

mean_val = [np.zeros(784) for i in range(10)]
tot_val = np.zeros(10)
for x, t in train:
    mean_val[np.argmax(t)] += x
    tot_val[np.argmax(t)] += 1

normalization_net = Sequential(
    NormalizationLayer(0, 255, -1, 1),
    SignLayer,
)

for i in range(10):
    mean_val[i] = mean_val[i] / tot_val[i]
    num = mean_val[i].reshape(28, 28)
    plt.imshow(normalization_net.forward(num), cmap=plt.get_cmap('Greys'))
    # plt.imshow(num))
    plt.show()

hop_net = Hopfield(784)

stored_numers = [0, 1]  #numbers stored in the network

for i in stored_numers:
Exemple #4
0
    err = 0
    for (img, target) in test:
        #print str(np.argmax(model.forward(test_data[ind])))+' '+str(np.argmax(test_targets[ind]))
        if np.argmax(model.forward(img)) != np.argmax(target):
            err += 1
    print(1.0 - err / float(len(test))) * 100.0


if load_net:
    print "Load Network"
    model = StoreNetwork.load(name_net)
else:
    print "New Network"
    #Two layer network
    model = Sequential([
        NormalizationLayer(0, 255, -0.1, 0.1),
        LinearLayer(784, 10, weights='norm_random'),
        # TanhLayer,
        # LinearLayer(50, 10, weights='norm_random'),
        # TanhLayer,
        # NormalizationLayer(0,10,0,1),
        # SigmoidLayer()
    ])

# display = ShowTraining(epochs_num = epochs)

trainer = Trainer(show_training=False)  #, show_function = display.show)

J_list, dJdy_list, J_test = trainer.learn(
    model=model,
    train=train,
Exemple #5
0
        784,
        [
            {
                "size": 32,
                "output_layer": TanhLayer,
                "weights": W
            },
            {
                "size": 784,
                "output_layer": TanhLayer
            }  #, "weights": W.T()}
        ])
    ae.choose_network([0, 1])
    #ae.choose_network()
    model = Sequential([
        NormalizationLayer(0, 255, -0.1, 0.1),
        ae,
        NormalizationLayer(-1, 1, 0, 255),
    ])

plt.figure(12)
plt.figure(13)

train = [(t / 255.0, t / 255.0) for (t, v) in train[:100]]
# train = [(t,t) for (t,v) in train[:100]]

display = ShowTraining(epochs_num=epochs)

trainer = Trainer(show_training=True, show_function=display.show)

J_list, dJdy_list = trainer.learn(