def __init__(self, NP, means, mins, maxs, sds, outfile, errlev=0.1, goodchi2=350.0): """ Instantiates the class by synthetically generating data. """ MCMC.__init__(self, TargetAcceptedPoints=1000, NumberOfParams=NP, Mins=mins, Maxs=maxs, SDs=sds, \ write2file=True, outputfilename=outfile, alpha=0.1, debug=False,\ EstimateCovariance=True, CovNum=100, goodchi2=goodchi2) lcurv.readmap() lcurv.mockdata(means,errlev)
def mockdata(): global pars lcurv.readmap() Rp = 39.4 Rn, a, b = 0.4, 0, 0.3 pars = [51, 290, 1.0, Rp, Rn, a, b] pars = np.array(pars) print(pars) errlev = 0.04 lcurv.mockdata(pars, errlev)
def mockdata(): global pars lcurv.readmap() Rp = 39.4 # scaled by 30 Rn,a,b = 0.4, 0, 0.3 print('r_half = ',Rhalf(1,Rn,a,b)*Rp/30) pars = [ 51, 290, 1.0, Rp, Rn, a, b ] pars = np.array(pars) print(pars) errlev = 0.04 lcurv.mockdata(pars,errlev)
def mockdata(): global pars lcurv.readmap() Rp = 39.4 # scaled by 30 Rn, a, b = 0.4, 0, 0.3 print('r_half = ', Rhalf(1, Rn, a, b) * Rp / 30) pars = [51, 290, 1.0, Rp, Rn, a, b] pars = np.array(pars) print(pars) errlev = 0.04 lcurv.mockdata(pars, errlev)
def __init__(self, NP, means, mins, maxs, sds, outfile, errlev=0.1, goodchi2=350.0): """ Instantiates the class by synthetically generating data. """ MCMC.__init__(self, TargetAcceptedPoints=1000, NumberOfParams=NP, Mins=mins, Maxs=maxs, SDs=sds, \ write2file=True, outputfilename=outfile, alpha=0.1, debug=False,\ EstimateCovariance=True, CovNum=100, goodchi2=goodchi2) lcurv.readmap() lcurv.mockdata(means, errlev)
import numpy import lcurv import metrop from scipy.optimize import leastsq lcurv.readmap() t1 = (1, 100, 200) t2 = (300, 400, 500) norm = (0.5, 1, 2.5) rp = (10, 20, 30) rn = (0, 0.7, 1) a = (-1, .5, 1) b = (-1, .5, 1) p = [] lo = [] hi = [] for f in (t1, t2, norm, rp, rn, a, b): p.append(f[1]) lo.append(f[0]) hi.append(f[2]) p = numpy.array(p) lo = numpy.array(lo) hi = numpy.array(hi) errlev = 0.05 print(lo) print(p) print(hi)
import numpy import lcurv import metrop from scipy.optimize import leastsq lcurv.readmap() t1 = (1,100,200) t2 = (300,400,500) norm = (0.5,1,2.5) rp = (10,20,30) rn = (0,0.7,1) a = (-1,.5,1) b = (-1,.5,1) p = [] lo = [] hi = [] for f in (t1,t2,norm,rp,rn,a,b): p.append(f[1]) lo.append(f[0]) hi.append(f[2]) p = numpy.array(p) lo = numpy.array(lo) hi = numpy.array(hi) errlev = 0.05 print(lo) print(p) print(hi)