Exemple #1
0
    def run(self, args):
        """
        Run the challenge mode
        """
        route_indexer = RouteIndexer(args.routes, args.scenarios, args.repetitions)

        if args.resume:
            route_indexer.resume(args.checkpoint)
            self.statistics_manager.resume(args.checkpoint)
        else:
            self.statistics_manager.clear_record(args.checkpoint)
            route_indexer.save_state(args.checkpoint)

        while route_indexer.peek():
            # setup
            config = route_indexer.next()

            # run
            self._load_and_run_scenario(args, config)

            route_indexer.save_state(args.checkpoint)

        # save global statistics
        print("\033[1m> Registering the global statistics\033[0m")
        global_stats_record = self.statistics_manager.compute_global_statistics(route_indexer.total)
        StatisticsManager.save_global_record(global_stats_record, self.sensor_icons, route_indexer.total, args.checkpoint)
Exemple #2
0
    def run(self, args, customized_data):
        """
        Run the challenge mode
        """
        route_indexer = RouteIndexer(args.routes, args.scenarios,
                                     args.repetitions)
        if args.resume:
            route_indexer.resume(self.save_path)
            self.statistics_manager.resume(self.save_path)
        else:
            self.statistics_manager.clear_record(self.save_path)
        while route_indexer.peek():
            # setup
            config = route_indexer.next()
            # run
            self._load_and_run_scenario(args, config, customized_data)
            self._cleanup(ego=True)

            route_indexer.save_state(self.save_path)
        # save global statistics
        # modification
        global_stats_record = self.statistics_manager.compute_global_statistics(
            route_indexer.total)
        StatisticsManager.save_global_record(global_stats_record, self.sensors,
                                             self.save_path)
    def run(self, args, filename, data_folder, route_folder, model_path):
        """
        Run the challenge mode
        """
        route_indexer = RouteIndexer(args.routes, args.scenarios,
                                     args.repetitions, route_folder)
        if args.resume:
            route_indexer.resume(args.checkpoint)
            self.statistics_manager.resume(args.checkpoint)
        else:
            self.statistics_manager.clear_record(args.checkpoint)
            k = 0
        while route_indexer.peek():
            #x = time.time()
            k += 1
            # setup
            config = route_indexer.next()
            # run
            self._load_and_run_scenario(args, config, data_folder,
                                        route_folder, k, model_path)

            self._cleanup(ego=True)

            route_indexer.save_state(args.checkpoint)

            # save global statistics
            global_stats_record, route_in_km = self.statistics_manager.compute_global_statistics(
                route_indexer.total)
            StatisticsManager.save_global_record(global_stats_record,
                                                 route_in_km, self.sensors,
                                                 args.checkpoint, filename,
                                                 config)
Exemple #4
0
    def __init__(self,
                 args,
                 scenario_class,
                 scenario,
                 route,
                 checkpoint='simulation_results.json',
                 town=None,
                 port=1000,
                 tm_port=1002,
                 debug=False):
        args = deepcopy(args)

        # Inject args
        args.scenario_class = scenario_class
        args.town = town
        args.port = port
        args.trafficManagerPort = tm_port
        args.scenarios = scenario
        args.routes = route
        args.debug = debug
        args.checkpoint = checkpoint
        args.record = ''

        self.runner = LeaderboardEvaluator(args, StatisticsManager())
        self.args = args
def main():
    description = "CARLA AD Leaderboard Evaluation: evaluate your Agent in CARLA scenarios\n"

    # general parameters
    parser = argparse.ArgumentParser(description=description, formatter_class=RawTextHelpFormatter)
    parser.add_argument('--host', default='localhost',
                        help='IP of the host server (default: localhost)')
    parser.add_argument('--port', default='2000', help='TCP port to listen to (default: 2000)')
    parser.add_argument('--trafficManagerPort', default='8000',
                        help='Port to use for the TrafficManager (default: 8000)')
    parser.add_argument('--trafficManagerSeed', default='0',
                        help='Seed used by the TrafficManager (default: 0)')
    parser.add_argument('--debug', type=int, help='Run with debug output', default=0)
    parser.add_argument('--record', type=str, default='',
                        help='Use CARLA recording feature to create a recording of the scenario')
    parser.add_argument('--timeout', default="120.0",
                        help='Set the CARLA client timeout value in seconds')

    # simulation setup
    parser.add_argument('--routes',
                        help='Name of the route to be executed. Point to the route_xml_file to be executed.',
                        required=True)
    parser.add_argument('--scenarios',
                        help='Name of the scenario annotation file to be mixed with the route.',
                        required=True)
    parser.add_argument('--repetitions',
                        type=int,
                        default=1,
                        help='Number of repetitions per route.')

    # agent-related options
    parser.add_argument("-a", "--agent", type=str, help="Path to Agent's py file to evaluate", required=True)
    parser.add_argument("--agent-config", type=str, help="Path to Agent's configuration file", default="")

    parser.add_argument("--track", type=str, default='SENSORS', help="Participation track: SENSORS, MAP")
    parser.add_argument('--resume', type=bool, default=False, help='Resume execution from last checkpoint?')
    parser.add_argument("--checkpoint", type=str,
                        default='./simulation_results.json',
                        help="Path to checkpoint used for saving statistics and resuming")
    parser.add_argument("--timely-commands", type=bool, default=False, help="Delay commands by their runtime")
    parser.add_argument("--frame-rate", type=int, default=20, help="Simulator frame rate")

    arguments = parser.parse_args()

    statistics_manager = StatisticsManager()

    try:
        leaderboard_evaluator = LeaderboardEvaluator(arguments, statistics_manager)
        leaderboard_evaluator.run(arguments)

    except Exception as e:
        traceback.print_exc()
    finally:
        del leaderboard_evaluator
    def run(self, args):
        """
        Run the challenge mode
        """
        # agent_class_name = getattr(self.module_agent, 'get_entry_point')()
        # self.agent_instance = getattr(self.module_agent, agent_class_name)(args.agent_config)

        route_indexer = RouteIndexer(args.routes, args.scenarios, args.repetitions)

        if args.resume:
            route_indexer.resume(args.checkpoint)
            self.statistics_manager.resume(args.checkpoint)
        else:
            self.statistics_manager.clear_record(args.checkpoint)
            route_indexer.save_state(args.checkpoint)

        while route_indexer.peek():
            # setup
            config = route_indexer.next()

            # run
            self._load_and_run_scenario(args, config)

            for obj in gc.get_objects():
                try:
                    if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
                        print(type(obj), obj.size())
                except:
                    pass

            route_indexer.save_state(args.checkpoint)

        # save global statistics
        print("\033[1m> Registering the global statistics\033[0m")
        global_stats_record = self.statistics_manager.compute_global_statistics(route_indexer.total)
        StatisticsManager.save_global_record(global_stats_record, self.sensor_icons, route_indexer.total, args.checkpoint)
Exemple #7
0
def start_evaluation(arguments):
    print("Starting the evaluation")
    print(arguments)

    statistics_manager = StatisticsManager()

    try:
        leaderboard_evaluator = LeaderboardEvaluator(arguments,
                                                     statistics_manager)
        leaderboard_evaluator.run(arguments)

    except Exception as e:
        traceback.print_exc()
    finally:
        del leaderboard_evaluator
    def __init__(self,
                 args,
                 scenario,
                 route,
                 port=1000,
                 tm_port=1002,
                 debug=False):
        args = deepcopy(args)

        # Inject args
        args.scenario_class = 'route_scenario'
        args.port = port
        args.trafficManagerPort = tm_port
        args.scenarios = scenario
        args.routes = route
        args.debug = debug
        args.record = ''

        self.runner = LeaderboardEvaluator(args, StatisticsManager())
        self.args = args
Exemple #9
0
def main():

    arguments = specify_args()
    arguments.debug = True
    statistics_manager = StatisticsManager()

    # Fixed Hyperparameters
    # if use_actors = False, no other actors will be generated
    use_actors = False
    using_customized_route_and_scenario = True
    multi_actors_scenarios = ['Scenario12']
    arguments.scenarios = 'leaderboard/data/fuzzing_scenarios.json'
    town_name = 'Town03'
    scenario = 'Scenario12'
    direction = 'front'
    route = 0
    # sample_factor is an integer between [1, 5]
    sample_factor = 5
    # waypoints_num_limit: the maximum number of waypoints that we consider to perturb.
    waypoints_num_limit = 10
    # lane_width = 3.5
    max_num_of_vehicle = 2
    max_num_of_pedestrians = 2

    # Parameters to optimize
    # Set up environment parameters
    # real, [0, 1]
    friction = 0.1
    # integer, [0, 20]
    weather_index = 2

    # Laundry Stuff-------------------------------------------------------------
    arguments.weather_index = weather_index
    os.environ['WEATHER_INDEX'] = str(weather_index)

    town_scenario_direction = town_name + '/' + scenario

    folders = [os.environ['SAVE_FOLDER'], town_name, scenario]
    if scenario in multi_actors_scenarios:
        town_scenario_direction += '/' + direction
        folders.append(direction)

    cur_folder_name = make_hierarchical_dir(folders)

    os.environ['SAVE_FOLDER'] = cur_folder_name
    arguments.save_folder = os.environ['SAVE_FOLDER']

    route_prefix = 'leaderboard/data/customized_routes/' + town_scenario_direction + '/route_'

    route_str = str(route)
    if route < 10:
        route_str = '0' + route_str
    arguments.routes = route_prefix + route_str + '.xml'
    os.environ['ROUTES'] = arguments.routes

    # extract waypoints along route
    import xml.etree.ElementTree as ET
    tree = ET.parse(arguments.routes)
    route_waypoints = []

    # this iteration should only go once since we only keep one route per file
    for route in tree.iter("route"):
        route_id = route.attrib['id']
        route_town = route.attrib['town']

        for waypoint in route.iter('waypoint'):
            route_waypoints.append(
                carla.Transform(
                    carla.Location(x=float(waypoint.attrib['x']),
                                   y=float(waypoint.attrib['y']),
                                   z=float(waypoint.attrib['z'])),
                    carla.Rotation(float(waypoint.attrib['pitch']),
                                   float(waypoint.attrib['yaw']),
                                   float(waypoint.attrib['roll']))))

    # extract waypoints for the scenario
    world_annotations = RouteParser.parse_annotations_file(arguments.scenarios)
    info = world_annotations[town_name][0]["available_event_configurations"][0]

    center = info["center"]
    RouteParser.convert_waypoint_float(center)
    center_location = carla.Location(float(center['x']), float(center['y']),
                                     float(center['z']))
    center_rotation = carla.Rotation(float(center['pitch']),
                                     float(center['yaw']), 0.0)
    center_transform = carla.Transform(center_location, center_rotation)
    # --------------------------------------------------------------------------

    if use_actors:
        # Set up actors

        # ego car
        ego_car_waypoints_perturbation = []
        for i in range(waypoints_num_limit):
            dx = np.clip(np.random.normal(0, 2, 1)[0], -0.5, 0.5)
            dy = np.clip(np.random.normal(0, 2, 1)[0], -0.5, 0.5)
            ego_car_waypoints_perturbation.append((dx, dy))

        # static
        static_1_transform = center_transform
        static_1 = Static(model='static.prop.barrel',
                          spawn_transform=static_1_transform)
        static_list = [static_1]

        # pedestrians
        pedestrian_1_transform = create_transform(
            route_waypoints[0].location.x - 2,
            route_waypoints[0].location.y - 8, 0, 0,
            route_waypoints[0].rotation.yaw, 0)
        pedestrian_1 = Pedestrian(model='walker.pedestrian.0001',
                                  spawn_transform=pedestrian_1_transform,
                                  trigger_distance=20,
                                  speed=1.5,
                                  dist_to_travel=6,
                                  after_trigger_behavior='stop')
        pedestrian_list = [pedestrian_1]

        # vehicles
        waypoint_follower = True

        vehicle_1_transform = create_transform(
            route_waypoints[1].location.x, route_waypoints[1].location.y - 5,
            0, 0, route_waypoints[1].rotation.yaw, 0)

        # if waypoint_follower == False
        vehicle_1_dist_to_travel = 5
        vehicle_1_target_direction = carla.Vector3D(x=0.2, y=1, z=0)

        # else
        targeted_waypoint = create_transform(
            route_waypoints[1].location.x, route_waypoints[1].location.y - 40,
            0, 0, route_waypoints[1].rotation.yaw, 0)
        # targeted_waypoint = route_waypoints[-1]

        vehicle_1_waypoints_perturbation = []

        for i in range(waypoints_num_limit):
            dx = np.clip(np.random.normal(0, 2, 1)[0], -0.5, 0.5)
            dy = np.clip(np.random.normal(0, 2, 1)[0], -0.5, 0.5)
            vehicle_1_waypoints_perturbation.append((dx, dy))

        vehicle_1 = Vehicle(
            model='vehicle.audi.a2',
            spawn_transform=vehicle_1_transform,
            avoid_collision=True,
            initial_speed=0,
            trigger_distance=10,
            waypoint_follower=waypoint_follower,
            targeted_waypoint=targeted_waypoint,
            dist_to_travel=vehicle_1_dist_to_travel,
            target_direction=vehicle_1_target_direction,
            targeted_speed=10,
            after_trigger_behavior='stop',
            color='(0, 0, 0)',
            waypoints_perturbation=vehicle_1_waypoints_perturbation)

        vehicle_list = [vehicle_1]
    else:
        static_list = []
        pedestrian_list = []
        vehicle_list = []
        ego_car_waypoints_perturbation = []

    customized_data = {
        'friction': friction,
        'static_list': static_list,
        'pedestrian_list': pedestrian_list,
        'vehicle_list': vehicle_list,
        'center_transform': center_transform,
        'using_customized_route_and_scenario': True,
        'destination': route_waypoints[-1].location,
        'sample_factor': sample_factor,
        'ego_car_waypoints_perturbation': ego_car_waypoints_perturbation
    }

    try:
        leaderboard_evaluator = LeaderboardEvaluator(arguments,
                                                     statistics_manager)
        leaderboard_evaluator.run(arguments, customized_data)

    except Exception as e:
        traceback.print_exc()
    finally:
        del leaderboard_evaluator
def main():
    description = "CARLA AD Leaderboard Evaluation: evaluate your Agent in CARLA scenarios\n"

    # general parameters
    parser = argparse.ArgumentParser(description=description,
                                     formatter_class=RawTextHelpFormatter)
    parser.add_argument('--host',
                        default='localhost',
                        help='IP of the host server (default: localhost)')
    parser.add_argument('--port',
                        default='2000',
                        help='TCP port to listen to (default: 2000)')
    parser.add_argument('--debug',
                        type=int,
                        help='Run with debug output',
                        default=0)
    parser.add_argument('--spectator',
                        type=bool,
                        help='Switch spectator view on?',
                        default=True)
    parser.add_argument(
        '--record',
        type=str,
        default='',
        help='Use CARLA recording feature to create a recording of the scenario'
    )
    parser.add_argument('--timeout',
                        default="30.0",
                        help='Set the CARLA client timeout value in seconds')

    # simulation setup
    parser.add_argument('--challenge-mode',
                        action="store_true",
                        help='Switch to challenge mode?')
    parser.add_argument(
        '--routes',
        help=
        'Name of the route to be executed. Point to the route_xml_file to be executed.',
        required=True)
    parser.add_argument(
        '--scenarios',
        help='Name of the scenario annotation file to be mixed with the route.',
        required=True)
    parser.add_argument('--repetitions',
                        type=int,
                        default=1,
                        help='Number of repetitions per route.')

    # agent-related options
    parser.add_argument("-a",
                        "--agent",
                        type=str,
                        help="Path to Agent's py file to evaluate",
                        required=True)
    parser.add_argument("--agent-config",
                        type=str,
                        help="Path to Agent's configuration file",
                        default="")

    parser.add_argument("--track",
                        type=str,
                        default='SENSORS',
                        help="Participation track: SENSORS, MAP")
    parser.add_argument('--resume',
                        type=bool,
                        default=False,
                        help='Resume execution from last checkpoint?')
    parser.add_argument(
        "--checkpoint",
        type=str,
        default='./simulation_results.json',
        help="Path to checkpoint used for saving statistics and resuming")
    parser.add_argument('--simulation_number',
                        type=int,
                        help='Type the simulation folder to store the data')
    parser.add_argument('--scene_number',
                        type=int,
                        default=1,
                        help='Type the scene number to be executed')

    arguments = parser.parse_args()

    statistics_manager = StatisticsManager()

    try:
        print(arguments.simulation_number)
        path = "/home/scope/Carla/Resonate-Dynamic-Risk/resonate-carla/leaderboard/data/my_data/new-data/"  #folder to save the simulation data
        model_path = "/home/scope/Carla/Resonate-Dynamic-Risk/resonate-carla/leaderboard/team_code/detector_code/B-VAE-weights/"  #trained model weights of the assurance monitor
        os.makedirs(path + "simulation%d" % arguments.simulation_number + '/',
                    exist_ok=True)
        filename = path + "simulation%d" % arguments.simulation_number + '/' + "simulation_data.csv"  #csv to store weather data
        data_folder = "/home/scope/Carla/Resonate-Dynamic-Risk/resonate-carla/leaderboard/data/my_data/new-data/simulation%d" % arguments.simulation_number  #sub-folder for each scene run
        route_folder = "/home/scope/Carla/Resonate-Dynamic-Risk/resonate-carla/leaderboard/data/my_routes/new-routes/simulation%d" % arguments.scene_number  #scene route generated using our textX generator
        leaderboard_evaluator = LeaderboardEvaluator(arguments,
                                                     statistics_manager)
        leaderboard_evaluator.run(arguments, filename, data_folder,
                                  route_folder, model_path)
        fault_data_path = data_folder + "/fault_data.csv"
        #data_plotting(data_folder,fault_data_path,filename)

    except Exception as e:
        traceback.print_exc()
    finally:
        del leaderboard_evaluator
Exemple #11
0
def run_simulation(customized_data,
                   launch_server,
                   episode_max_time,
                   route_path,
                   route_str,
                   scenario_file,
                   ego_car_model,
                   background_vehicles=False,
                   changing_weather=False,
                   save_folder=None,
                   using_customized_route_and_scenario=True,
                   record_every_n_step=1):
    arguments = arguments_info()
    arguments.port = customized_data['port']
    arguments.background_vehicles = background_vehicles
    arguments.record_every_n_step = record_every_n_step

    if save_folder:
        arguments.save_folder = save_folder

    # model path and checkpoint path
    if ego_car_model == 'lbc':
        arguments.agent = 'scenario_runner/team_code/image_agent.py'
        arguments.agent_config = 'models/epoch=24.ckpt'
        base_save_folder = 'collected_data_customized'
    elif ego_car_model == 'auto_pilot':
        arguments.agent = 'leaderboard/team_code/auto_pilot.py'
        arguments.agent_config = ''
        base_save_folder = 'collected_data_autopilot'
    elif ego_car_model == 'pid_agent':
        arguments.agent = 'scenario_runner/team_code/pid_agent.py'
        arguments.agent_config = ''
        base_save_folder = 'collected_data_pid_agent'
    elif ego_car_model == 'map_model':
        arguments.agent = 'scenario_runner/team_code/map_agent.py'
        arguments.agent_config = 'models/stage1_default_50_epoch=16.ckpt'
        base_save_folder = 'collected_data_map_model'
    else:
        print('unknown ego_car_model:', ego_car_model)
        raise

    from leaderboard.utils.statistics_manager import StatisticsManager
    statistics_manager = StatisticsManager()
    # Fixed Hyperparameters
    sample_factor = 5
    arguments.debug = 0

    # Laundry Stuff-------------------------------------------------------------
    arguments.weather_index = customized_data['weather_index']
    os.environ['WEATHER_INDEX'] = str(customized_data['weather_index'])

    # used to read scenario file
    arguments.scenarios = scenario_file

    # used to compose folder to save real-time data
    os.environ['SAVE_FOLDER'] = arguments.save_folder

    # used to read route to run; used to compose folder to save real-time data
    arguments.routes = route_path
    os.environ['ROUTES'] = arguments.routes

    # used to record real time deviation data
    arguments.deviations_folder = arguments.save_folder + '/' + pathlib.Path(
        os.environ['ROUTES']).stem

    # used to read real-time data
    save_path = arguments.save_folder + '/' + pathlib.Path(
        os.environ['ROUTES']).stem

    arguments.changing_weather = changing_weather

    # extract waypoints along route
    import xml.etree.ElementTree as ET
    tree = ET.parse(arguments.routes)
    route_waypoints = []

    for route in tree.iter("route"):
        for waypoint in route.iter('waypoint'):
            route_waypoints.append(
                create_transform(float(waypoint.attrib['x']),
                                 float(waypoint.attrib['y']),
                                 float(waypoint.attrib['z']),
                                 float(waypoint.attrib['pitch']),
                                 float(waypoint.attrib['yaw']),
                                 float(waypoint.attrib['roll'])))

    # --------------------------------------------------------------------------

    customized_data[
        'using_customized_route_and_scenario'] = using_customized_route_and_scenario
    customized_data['destination'] = route_waypoints[-1].location
    customized_data['sample_factor'] = sample_factor
    customized_data['number_of_attempts_to_request_actor'] = 10

    try:
        leaderboard_evaluator = LeaderboardEvaluator(arguments,
                                                     statistics_manager,
                                                     launch_server,
                                                     episode_max_time)
        leaderboard_evaluator.run(arguments, customized_data)
    except Exception as e:
        traceback.print_exc()
    finally:
        del leaderboard_evaluator
        # collect signals for estimating objectives

        objectives, loc, object_type, route_completion = estimate_objectives(
            save_path)

    return objectives, loc, object_type, route_completion
def main():
    description = "CARLA AD Leaderboard Evaluation: evaluate your Agent in CARLA scenarios\n"

    # general parameters
    parser = argparse.ArgumentParser(description=description,
                                     formatter_class=RawTextHelpFormatter)
    parser.add_argument('--host',
                        default='localhost',
                        help='IP of the host server (default: localhost)')
    parser.add_argument('--port',
                        default='2000',
                        help='TCP port to listen to (default: 2000)')
    parser.add_argument('--sync',
                        action='store_true',
                        help='Forces the simulation to run synchronously')
    parser.add_argument('--debug',
                        type=int,
                        help='Run with debug output',
                        default=0)
    parser.add_argument('--spectator',
                        type=bool,
                        help='Switch spectator view on?',
                        default=True)
    parser.add_argument(
        '--record',
        type=str,
        default='',
        help='Use CARLA recording feature to create a recording of the scenario'
    )
    # modification: 30->15
    parser.add_argument('--timeout',
                        default="30.0",
                        help='Set the CARLA client timeout value in seconds')

    # simulation setup
    parser.add_argument('--challenge-mode',
                        action="store_true",
                        help='Switch to challenge mode?')
    parser.add_argument(
        '--routes',
        help=
        'Name of the route to be executed. Point to the route_xml_file to be executed.',
        required=True)
    parser.add_argument(
        '--scenarios',
        help='Name of the scenario annotation file to be mixed with the route.',
        required=True)
    parser.add_argument('--repetitions',
                        type=int,
                        default=1,
                        help='Number of repetitions per route.')

    # agent-related options
    parser.add_argument("-a",
                        "--agent",
                        type=str,
                        help="Path to Agent's py file to evaluate",
                        required=True)
    parser.add_argument("--agent-config",
                        type=str,
                        help="Path to Agent's configuration file",
                        default="")

    parser.add_argument("--track",
                        type=str,
                        default='SENSORS',
                        help="Participation track: SENSORS, MAP")
    parser.add_argument('--resume',
                        type=bool,
                        default=False,
                        help='Resume execution from last checkpoint?')
    parser.add_argument(
        "--checkpoint",
        type=str,
        default='./simulation_results.json',
        help="Path to checkpoint used for saving statistics and resuming")

    # addition
    parser.add_argument("--weather-index",
                        type=int,
                        default=0,
                        help="see WEATHER for reference")
    parser.add_argument("--save_folder",
                        type=str,
                        default='collected_data',
                        help="Path to save simulation data")

    arguments = parser.parse_args()
    # arguments.debug = True

    statistics_manager = StatisticsManager()
    # 0, 1, 2, 3, 10, 11, 14, 15, 19
    # only 15 record vehicle's location for red light run

    # weather_indexes is a subset of integers in [0, 20]
    weather_indexes = [2]
    routes = [i for i in range(0, 1)]

    using_customized_route_and_scenario = True

    multi_actors_scenarios = ['Scenario4']
    if using_customized_route_and_scenario:
        arguments.scenarios = 'leaderboard/data/customized_scenarios.json'
        town_names = ['Town01']
        scenarios = ['Scenario4']
        directions = ['right']
        routes = [0]
    else:
        route_prefix = 'leaderboard/data/routes/route_'
        town_names = [None]
        scenarios = [None]
        directions = [None]

    # if we use autopilot, we only need one run of weather index since we constantly switching weathers for diversity
    if arguments.agent == 'leaderboard/team_code/auto_pilot.py':
        weather_indexes = weather_indexes[:1]

    time_start = time.time()

    for town_name in town_names:
        for scenario in scenarios:
            if scenario not in multi_actors_scenarios:
                directions = [None]
            for dir in directions:
                for weather_index in weather_indexes:
                    arguments.weather_index = weather_index
                    os.environ['WEATHER_INDEX'] = str(weather_index)

                    if using_customized_route_and_scenario:

                        town_scenario_direction = town_name + '/' + scenario

                        folder_1 = os.environ['SAVE_FOLDER'] + '/' + town_name
                        folder_2 = folder_1 + '/' + scenario
                        if not os.path.exists(folder_1):
                            os.mkdir(folder_1)
                        if not os.path.exists(folder_2):
                            os.mkdir(folder_2)
                        if scenario in multi_actors_scenarios:
                            town_scenario_direction += '/' + dir
                            folder_2 += '/' + dir
                            if not os.path.exists(folder_2):
                                os.mkdir(folder_2)

                        os.environ['SAVE_FOLDER'] = folder_2
                        arguments.save_folder = os.environ['SAVE_FOLDER']

                        route_prefix = 'leaderboard/data/customized_routes/' + town_scenario_direction + '/route_'

                    for route in routes:
                        # addition
                        # dx: -10~10
                        # dy: -5~50
                        # dyaw: -90~90
                        # d_activation_dist: -20~20
                        # _other_actor_target_velocity: 0~20
                        # actor_type: see specs.txt for a detailed options
                        dx = 0
                        dy = 0
                        dyaw = 0
                        d_activation_dist = 0
                        _other_actor_target_velocity = 5
                        actor_type = 'vehicle.diamondback.century'

                        if using_customized_route_and_scenario:
                            dx = 0
                            dy = 0
                            dyaw = -40
                            d_activation_dist = 0
                            _other_actor_target_velocity = 5

                        customized_data = {
                            'dx': dx,
                            'dy': dy,
                            'dyaw': dyaw,
                            'd_activation_dist': d_activation_dist,
                            '_other_actor_target_velocity':
                            _other_actor_target_velocity,
                            'using_customized_route_and_scenario':
                            using_customized_route_and_scenario,
                            'actor_type': actor_type
                        }

                        route_str = str(route)
                        if route < 10:
                            route_str = '0' + route_str
                        arguments.routes = route_prefix + route_str + '.xml'
                        os.environ['ROUTES'] = arguments.routes

                        try:
                            leaderboard_evaluator = LeaderboardEvaluator(
                                arguments, statistics_manager)
                            leaderboard_evaluator.run(arguments,
                                                      customized_data)

                        except Exception as e:
                            traceback.print_exc()
                        finally:
                            del leaderboard_evaluator
                        print('time elapsed :', time.time() - time_start)