Exemple #1
0
    def _learn_granular(self, feat_mat, grades):
        min_grade = min(grades)
        max_grade = max(grades)

        grade_to_model = {}
        cur_center_grade = min_grade + 1
        while cur_center_grade < max_grade:
            inds_within_one_grade = [ind for ind, grade in enumerate(grades) if abs(grade - cur_center_grade) < 1.1]
            cur_feat_mat = np.vstack([feat_mat[ind, :] for ind in inds_within_one_grade])
            cur_grades = [grades[ind] for ind in inds_within_one_grade]

            learner = LinearRegression(intercept=True, debug=params.DEBUG)
            learner.train(
                cur_feat_mat,
                cur_grades,
                self.ds_train.getEssaySet(),
                self.ds_train.getDomain(),
                {"feature_selection": "inclusive"},
            )
            grade_to_model[cur_center_grade] = learner

            cur_center_grade += 1

        grade_to_model[min_grade] = grade_to_model[min_grade + 1]
        grade_to_model[max_grade] = grade_to_model[max_grade - 1]

        return grade_to_model
Exemple #2
0
 def test_correlations(self):
     X = np.array([[1, 1], [2, 3], [3, 1]])
     Y = np.array([1, 3, 1])
     lr = LinearRegression()
     correlations = lr.get_feature_grade_correlations(X, Y)
     expected = [0, 1]
     for feat_ind, corr in enumerate(correlations):
         self.assertAlmostEqual(expected[feat_ind], corr)
Exemple #3
0
 def test_predict(self):
     X = [[1, 0], [0, 2]]
     Y = [3, 2]
     lr = LinearRegression()
     lr.train(X, Y)
     
     self.assertAlmostEqual(3, lr.predict([1,0]))
     self.assertAlmostEqual(4, lr.predict([1,1]))
Exemple #4
0
 def test_solve(self):
     X = [[1, 0], [0, 2]]
     Y = [3, 2]
     lr = LinearRegression()
     lr.train(X, Y)
     self.assertFalse(lr.has_intercept)
     self.assertAlmostEqual(3, lr.params[0])
     self.assertAlmostEqual(1, lr.params[1])
     self.assertEqual(2, len(lr.params))
     
     X = [[1, 0], [0, 2], [0, 3]]
     Y = [3, 2, 1]
     lr = LinearRegression(intercept=True)
     lr.train(X, Y)
     self.assertTrue(lr.has_intercept)
     self.assertAlmostEqual(-1, lr.params[0])
     self.assertAlmostEqual(-1, lr.params[1])
     self.assertEqual(2, len(lr.params))
     self.assertAlmostEqual(4, lr.intercept)