Exemple #1
0
def test_select_random_size_none(monkeypatch):
    # Monkeypatch so we know that random returns
    monkeypatch.setattr(random, 'randint',
                        lambda x, y: 0)  # randint always returns 0

    input_matrix, target_matrix = datasets.get_xor()
    new_inp_matrix, new_tar_matrix = base.select_random(
        input_matrix, target_matrix)
    assert new_inp_matrix.shape == input_matrix.shape
    assert new_tar_matrix.shape == target_matrix.shape

    for inp_vec in new_inp_matrix:
        assert (inp_vec == input_matrix[0]).all()  # due to monkeypatch
    for tar_vec in new_tar_matrix:
        assert (tar_vec == target_matrix[0]).all()  # due to monkeypatch
Exemple #2
0
def test_select_random_size_none(seed_random):
    # Default to size smaller than number of samples

    input_matrix, target_matrix = datasets.get_random_classification(
        1000, 1, 2)

    new_inp_matrix, new_tar_matrix = base.select_random(
        input_matrix, target_matrix)

    assert len(new_inp_matrix) < len(input_matrix)
    assert len(new_inp_matrix) == base._selection_size_heuristic(
        len(input_matrix))

    assert len(new_tar_matrix) < len(input_matrix)
    assert len(new_tar_matrix) == base._selection_size_heuristic(
        len(input_matrix))
Exemple #3
0
def test_select_random_size_none_few_samples(monkeypatch):
    # When number of samples is low, default to all samples

    # Monkeypatch so we know that random returns
    # randint always returns 0
    monkeypatch.setattr(random, 'randint', lambda x, y: 0)

    input_matrix, target_matrix = datasets.get_xor()
    new_inp_matrix, new_tar_matrix = base.select_random(
        input_matrix, target_matrix)
    assert new_inp_matrix.shape == input_matrix.shape
    assert new_tar_matrix.shape == target_matrix.shape

    for inp_vec in new_inp_matrix:
        assert (inp_vec == input_matrix[0]).all()  # Due to monkeypatch
    for tar_vec in new_tar_matrix:
        assert (tar_vec == target_matrix[0]).all()  # Due to monkeypatch
Exemple #4
0
def test_select_random(monkeypatch):
    # Monkeypatch so we know that random returns
    # randint always returns 0
    monkeypatch.setattr(random, 'randint', lambda x, y: 0)

    input_matrix, target_matrix = datasets.get_xor()

    # Test size param
    new_inp_matrix, new_tar_matrix = base.select_random(input_matrix,
                                                        target_matrix,
                                                        size=2)

    assert new_inp_matrix.shape[0] == 2
    assert new_tar_matrix.shape[0] == 2

    for inp_vec in new_inp_matrix:
        assert (inp_vec == input_matrix[0]).all()  # Due to monkeypatch
    for tar_vec in new_tar_matrix:
        assert (tar_vec == target_matrix[0]).all()  # Due to monkeypatch