Exemple #1
0
    def __init__(self, step_size_getter=None):
        super(SteepestDescent, self).__init__()

        if step_size_getter is None:
            step_size_getter = WolfeLineSearch(
                initial_step_getter=FOChangeInitialStep())
        self._step_size_getter = step_size_getter
    def __init__(self,
                 step_size_getter=None,
                 initial_hessian_func=initial_hessian_identity):
        super(BFGS, self).__init__()

        if step_size_getter is None:
            step_size_getter = WolfeLineSearch(
                # Values recommended by Numerical Optimization 2nd, pp. 161
                c_1=1e-4,
                c_2=0.9,
                initial_step_getter=IncrPrevStep())
        self._step_size_getter = step_size_getter

        # NOTE: It is recommended to scale the identiy matrix
        # (Numerical Optimization 2nd, pp. 162)
        # as performed in initial_hessian_scaled_identity,
        # but empirical tests show it is more effective
        # to not scale identity matrix
        # TODO: More testing needed
        self._initial_hessian_func = initial_hessian_func

        # BFGS Parameters
        self._prev_step = None
        self._prev_jacobian = None
        self._prev_inv_hessian = None
Exemple #3
0
    def __init__(self,
                 step_size_getter=None,
                 initial_hessian_func=initial_hessian_identity,
                 iterations_per_reset=100):
        super(BFGS, self).__init__()

        if step_size_getter is None:
            step_size_getter = WolfeLineSearch(
                # Values recommended by Numerical Optimization 2nd, pp. 161
                c_1=1e-4,
                c_2=0.9,
                initial_step_getter=FOChangeInitialStep())
        self._step_size_getter = step_size_getter

        # NOTE: It is recommended to scale the identiy matrix
        # (Numerical Optimization 2nd, pp. 162)
        # as performed in initial_hessian_scaled_identity,
        # but empirical tests show it is more effective
        # to not scale identity matrix
        # TODO: More testing needed
        self._initial_hessian_func = initial_hessian_func

        # Hessian approximation can become inaccurate
        # after many iterations on non-convex problems.
        # Periodically resetting can fix this.
        self._iterations_per_reset = iterations_per_reset

        # BFGS Parameters
        self._iteration = 0
        self._prev_step = None
        self._prev_jacobian = None
        self._prev_inv_hessian = None
Exemple #4
0
    def __init__(self, step_size_getter=None, momentum_rate=0.2):
        super(SteepestDescentMomentum, self).__init__()
        if step_size_getter is None:
            step_size_getter = WolfeLineSearch(
                initial_step_getter=FOChangeInitialStep())
        self._step_size_getter = step_size_getter

        self._momentum_rate = momentum_rate

        # Store previous step (step_size*direction) for momentum
        self._prev_step = None
Exemple #5
0
def test_LBFGS_approx_equal_BFGS_infinite_num_remembered_iterations():
    # When LBFGS has no limit on remembered iterations, it should approximately
    # equal BFGS, given initial hessian is the same on all iterations
    # "During its first m - 1 iterations,
    # Algorithm 7.5 is equivalent to the BFGS algorithm of Chapter 6
    # if the initial matrix H_0 is the same in both methods,
    # and if L-BFGS chooses H_0^k = H_0 at each iteration."
    # ~ Numerical Optimization 2nd pp. 179

    # Rosenbrock function
    f = lambda vec: 100.0 * (vec[1] - vec[0]**2)**2 + (vec[0] - 1.0)**2
    df = lambda vec: numpy.array([
        2.0 *
        (200.0 * vec[0]**3 - 200.0 * vec[0] * vec[1] + vec[0] - 1.0), 200.0 *
        (vec[1] - vec[0]**2)
    ])

    problem = Problem(obj_func=f, jac_func=df)

    # Optimize
    bfgs_vec = numpy.random.random(2)
    lbfgs_vec = numpy.copy(bfgs_vec)

    # Same identity hessian, for both optimizers
    bfgs_optimizer = BFGS(
        step_size_getter=WolfeLineSearch(),
        initial_hessian_func=optimizer.initial_hessian_identity)
    lbfgs_optimizer = LBFGS(
        step_size_getter=WolfeLineSearch(),
        num_remembered_iterations=float('inf'),
        initial_hessian_scalar_func=optimizer.initial_hessian_one_scalar)

    for i in range(10):
        _, bfgs_vec = bfgs_optimizer.next(problem, bfgs_vec)
        _, lbfgs_vec = lbfgs_optimizer.next(problem, lbfgs_vec)

        print i
        assert helpers.approx_equal(bfgs_vec, lbfgs_vec)
Exemple #6
0
    def __init__(self, step_size_getter=None):
        super(BFGS, self).__init__()

        if step_size_getter is None:
            step_size_getter = WolfeLineSearch(
                # Values recommended by Numerical Optimization 2nd, pp. 161
                c_1=1e-4,
                c_2=0.9,
                initial_step_getter=IncrPrevStep())
        self._step_size_getter = step_size_getter

        # BFGS Parameters
        self._prev_params = None
        self._prev_jacobian = None
        self._prev_inv_hessian = None
    def __init__(self,
                 step_size_getter=None,
                 num_remembered_iterations=5,
                 initial_hessian_scalar_func=initial_hessian_gamma_scalar):
        super(LBFGS, self).__init__()

        if step_size_getter is None:
            step_size_getter = WolfeLineSearch(
                # Values recommended by Numerical Optimization 2nd, pp. 161
                c_1=1e-4,
                c_2=0.9,
                initial_step_getter=IncrPrevStep())
        self._step_size_getter = step_size_getter

        self._initial_hessian_scalar_func = initial_hessian_scalar_func

        # L-BFGS Parameters
        self._num_remembered_iterations = num_remembered_iterations

        self._prev_step = None
        self._prev_jacobian = None

        self._prev_param_diffs = []  # Previous s_k values
        self._prev_jac_diffs = []  # Previous y_k values
Exemple #8
0
def test_LBFGS_wolfe_line_search():
    check_optimize_sphere_function(LBFGS(step_size_getter=WolfeLineSearch()))
Exemple #9
0
def test_steepest_descent_wolfe_line_search():
    check_optimize_sphere_function(
        SteepestDescent(step_size_getter=WolfeLineSearch()))