Exemple #1
0
class TestShearGammaPsi(object):

    def setup(self):
        self.shear_e1e2 = Shear()
        self.shear = ShearGammaPsi()

    def test_function(self):
        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        gamma, psi = 0.1, 0.5
        gamma1, gamma2 = param_util.shear_polar2cartesian(phi=psi, gamma=gamma)
        values = self.shear.function(x, y, gamma, psi)
        values_e1e2 = self.shear_e1e2.function(x, y, gamma1, gamma2)
        npt.assert_almost_equal(values, values_e1e2, decimal=5)

    def test_derivatives(self):
        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        gamma, psi = 0.1, 0.5
        gamma1, gamma2 = param_util.shear_polar2cartesian(phi=psi, gamma=gamma)
        values = self.shear.derivatives(x, y, gamma, psi)
        values_e1e2 = self.shear_e1e2.derivatives(x, y, gamma1, gamma2)
        npt.assert_almost_equal(values, values_e1e2, decimal=5)

    def test_hessian(self):
        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        gamma, psi = 0.1, 0.5
        gamma1, gamma2 = param_util.shear_polar2cartesian(phi=psi, gamma=gamma)
        values = self.shear.hessian(x, y, gamma, psi)
        values_e1e2 = self.shear_e1e2.hessian(x, y, gamma1, gamma2)
        npt.assert_almost_equal(values, values_e1e2, decimal=5)
    def _import_class(lens_type, custom_class, z_lens=None, z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol()
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Exemple #3
0
    def setup(self):
        self.extShear = Shear()

        e1, e2 = 0.1, 0.1
        self.kwargs_lens = {'e1': e1, 'e2': e2}
Exemple #4
0
class TestExternalShear(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.extShear = Shear()

        e1, e2 = 0.1, 0.1
        self.kwargs_lens = {'e1': e1, 'e2': e2}

    def test_function(self):
        x = np.array([1])
        y = np.array([2])
        values = self.extShear.function(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(values[0], 0.05, decimal=5)
        x = np.array([0])
        y = np.array([0])
        values = self.extShear.function(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(values[0], 0, decimal=5)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.extShear.function(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(values[0], 0.35, decimal=5)
        npt.assert_almost_equal(values[1], 0.7, decimal=5)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        f_x, f_y = self.extShear.derivatives(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(f_x[0], 0.3, decimal=5)
        npt.assert_almost_equal(f_y[0], -0.1, decimal=5)

        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        values = self.extShear.derivatives(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(values[0][0], 0.3, decimal=5)
        npt.assert_almost_equal(values[1][0], -0.1, decimal=5)

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])

        f_xx, f_yy, f_xy = self.extShear.hessian(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(f_xx, 0.1, decimal=5)
        npt.assert_almost_equal(f_yy, -0.1, decimal=5)
        npt.assert_almost_equal(f_xy, 0.1, decimal=5)

        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        values = self.extShear.hessian(x, y, **self.kwargs_lens)
        npt.assert_almost_equal(values[0], 0.1, decimal=5)
        npt.assert_almost_equal(values[1], -0.1, decimal=5)
        npt.assert_almost_equal(values[2], 0.1, decimal=5)

        e1, e2 = 0.1, -0.1
        kwargs = {'e1': e1, 'e2': e2}
        lensModel = LensModel(['SHEAR'])
        gamma1, gamma2 = lensModel.gamma(x, y, [kwargs])
        npt.assert_almost_equal(gamma1, e1, decimal=9)
        npt.assert_almost_equal(gamma2, e2, decimal=9)
def ext_shear_direction(data_class,
                        lens_model_class,
                        kwargs_lens,
                        strength_multiply=10):
    """

    :param kwargs_data:
    :param kwargs_psf:
    :param kwargs_options:
    :param lens_result:
    :param source_result:
    :param lens_light_result:
    :param else_result:
    :return:
    """
    x_grid, y_grid = data_class.pixel_coordinates
    x_grid = util.image2array(x_grid)
    y_grid = util.image2array(y_grid)
    shear = Shear()

    f_x_shear, f_y_shear = 0, 0
    for i, lens_model in enumerate(lens_model_class.lens_model_list):
        if lens_model == 'SHEAR':
            kwargs = kwargs_lens[i]
            f_x_shear, f_y_shear = shear.derivatives(
                x_grid,
                y_grid,
                e1=kwargs['e1'] * strength_multiply,
                e2=kwargs['e2'] * strength_multiply)
    x_shear = x_grid - f_x_shear
    y_shear = y_grid - f_y_shear

    f_x_foreground, f_y_foreground = 0, 0
    for i, lens_model in enumerate(lens_model_class.lens_model_list):
        if lens_model == 'FOREGROUND_SHEAR':
            kwargs = kwargs_lens[i]
            f_x_foreground, f_y_foreground = shear.derivatives(
                x_grid,
                y_grid,
                e1=kwargs['e1'] * strength_multiply,
                e2=kwargs['e2'] * strength_multiply)
    x_foreground = x_grid - f_x_foreground
    y_foreground = y_grid - f_y_foreground

    center_x = np.mean(x_grid)
    center_y = np.mean(y_grid)
    radius = (np.max(x_grid) - np.min(x_grid)) / 4
    circle_shear = util_mask.mask_sphere(x_shear, y_shear, center_x, center_y,
                                         radius)
    circle_foreground = util_mask.mask_sphere(x_foreground, y_foreground,
                                              center_x, center_y, radius)
    f, ax = plt.subplots(1, 1, figsize=(16, 8))
    im = ax.matshow(np.log10(data_class.data), origin='lower', alpha=0.5)
    im = ax.matshow(util.array2image(circle_shear),
                    origin='lower',
                    alpha=0.5,
                    cmap="jet")
    im = ax.matshow(util.array2image(circle_foreground),
                    origin='lower',
                    alpha=0.5)
    #f.show()
    return f, ax
    def _import_class(self, lens_type, i, custom_class):

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIE_simple
            return NIE_simple()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE':
            from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
            return GaussianKappaEllipse()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(grid=False, min_grid_number=100)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'FOREGROUND_SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            self._foreground_shear = True
            self._foreground_shear_idex = i
            return Shear()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import coreBurkert
            return coreBurkert()
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class[i])
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Exemple #7
0
 def setup(self):
     self.shear_e1e2 = Shear()
     self.shear = ShearGammaPsi()
Exemple #8
0
    def setup(self):
        self.extShear = Shear()

        gamma1, gamma2 = 0.1, 0.1
        self.kwargs_lens = {'gamma1': gamma1, 'gamma2': gamma2}
Exemple #9
0
    def _import_class(lens_type,
                      custom_class,
                      kwargs_interp,
                      z_lens=None,
                      z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param kwargs_interp: interpolation keyword arguments specifying the numerics.
         See description in the Interpolate() class. Only applicable for 'INTERPOL' and 'INTERPOL_SCALED' models.
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.constant_shift import Shift
            return Shift()
        elif lens_type == 'NIE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.nie_potential import NIE_POTENTIAL
            return NIE_POTENTIAL()
        elif lens_type == 'CONST_MAG':
            from lenstronomy.LensModel.Profiles.const_mag import ConstMag
            return ConstMag()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'SHEAR_REDUCED':
            from lenstronomy.LensModel.Profiles.shear import ShearReduced
            return ShearReduced()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'HESSIAN':
            from lenstronomy.LensModel.Profiles.hessian import Hessian
            return Hessian()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'PEMD':
            from lenstronomy.LensModel.Profiles.pemd import PEMD
            return PEMD()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'EPL':
            from lenstronomy.LensModel.Profiles.epl import EPL
            return EPL()
        elif lens_type == 'EPL_NUMBA':
            from lenstronomy.LensModel.Profiles.epl_numba import EPL_numba
            return EPL_numba()
        elif lens_type == 'SPL_CORE':
            from lenstronomy.LensModel.Profiles.splcore import SPLCORE
            return SPLCORE()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'NFW_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse_cse import NFW_ELLIPSE_CSE
            return NFW_ELLIPSE_CSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'TNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.tnfw_ellipse import TNFW_ELLIPSE
            return TNFW_ELLIPSE()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'HERNQUIST_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse_cse import HernquistEllipseCSE
            return HernquistEllipseCSE()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(**kwargs_interp)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled(**kwargs_interp)
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC_CONST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConst
            return CurvedArcConst()
        elif lens_type == 'CURVED_ARC_CONST_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConstMST
            return CurvedArcConstMST()
        elif lens_type == 'CURVED_ARC_SPP':
            from lenstronomy.LensModel.Profiles.curved_arc_spp import CurvedArcSPP
            return CurvedArcSPP()
        elif lens_type == 'CURVED_ARC_SIS_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_sis_mst import CurvedArcSISMST
            return CurvedArcSISMST()
        elif lens_type == 'CURVED_ARC_SPT':
            from lenstronomy.LensModel.Profiles.curved_arc_spt import CurvedArcSPT
            return CurvedArcSPT()
        elif lens_type == 'CURVED_ARC_TAN_DIFF':
            from lenstronomy.LensModel.Profiles.curved_arc_tan_diff import CurvedArcTanDiff
            return CurvedArcTanDiff()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_EXP':
            from lenstronomy.LensModel.Profiles.cored_density_exp import CoredDensityExp
            return CoredDensityExp()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'CORED_DENSITY_EXP_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_EXP')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        elif lens_type == 'MULTIPOLE':
            from lenstronomy.LensModel.Profiles.multipole import Multipole
            return Multipole()
        elif lens_type == 'CSE':
            from lenstronomy.LensModel.Profiles.cored_steep_ellipsoid import CSE
            return CSE()
        elif lens_type == 'ElliSLICE':
            from lenstronomy.LensModel.Profiles.elliptical_density_slice import ElliSLICE
            return ElliSLICE()
        elif lens_type == 'ULDM':
            from lenstronomy.LensModel.Profiles.uldm import Uldm
            return Uldm()
        elif lens_type == 'CORED_DENSITY_ULDM_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_ULDM')
        else:
            raise ValueError(
                '%s is not a valid lens model. Supported are: %s.' %
                (lens_type, _SUPPORTED_MODELS))