Exemple #1
0
 def setup(self):
     from lenstronomy.LensModel.Profiles.nie import NIE
     from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
     from lenstronomy.LensModel.Profiles.sis import SIS
     self.nie = NIE()
     self.spemd = SPEMD_SMOOTH()
     self.sis = SIS()
Exemple #2
0
class SPEMD(object):
    """
    class for smooth power law ellipse mass density profile
    """
    param_names = ['theta_E', 'gamma', 'e1', 'e2', 'center_x', 'center_y']
    lower_limit_default = {'theta_E': 0, 'gamma': 0, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100}
    upper_limit_default = {'theta_E': 100, 'gamma': 100, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100}

    def __init__(self):
        self.s2 = 0.00000001
        self.spp = SPP()
        self.spemd_smooth = SPEMD_SMOOTH()

    def function(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
        return self.spemd_smooth.function(x, y, theta_E, gamma, e1, e2, self.s2, center_x, center_y)

    def derivatives(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
        return self.spemd_smooth.derivatives(x, y, theta_E, gamma, e1, e2, self.s2, center_x, center_y)

    def hessian(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
        return self.spemd_smooth.hessian(x, y, theta_E, gamma, e1, e2, self.s2, center_x, center_y)

    def mass_3d_lens(self, r, theta_E, gamma, e1, e2):
        """
        computes the spherical power-law mass enclosed (with SPP routiune)
        :param r:
        :param theta_E:
        :param gamma:
        :param q:
        :param phi_G:
        :return:
        """
        return self.spp.mass_3d_lens(r, theta_E, gamma)
Exemple #3
0
 def test_bounds(self):
     from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
     profile = SPEMD_SMOOTH()
     compute_bool = profile._parameter_constraints(q_fastell=-1,
                                                   gam=-1,
                                                   s2=-1,
                                                   q=-1)
     assert compute_bool is False
Exemple #4
0
class SPEMD(object):
    """
    class for smooth power law ellipse mass density profile
    """
    def __init__(self):
        self.s2 = 0.00000001
        self.spp = SPP()
        self.spemd_smooth = SPEMD_SMOOTH()

    def function(self, x, y, theta_E, gamma, q, phi_G, center_x=0, center_y=0):
        return self.spemd_smooth.function(x, y, theta_E, gamma, q, phi_G, self.s2, center_x, center_y)

    def derivatives(self, x, y, theta_E, gamma, q, phi_G, center_x=0, center_y=0):
        return self.spemd_smooth.derivatives(x, y, theta_E, gamma, q, phi_G, self.s2, center_x, center_y)

    def hessian(self, x, y, theta_E, gamma, q, phi_G, center_x=0, center_y=0):
        return self.spemd_smooth.hessian(x, y, theta_E, gamma, q, phi_G, self.s2, center_x, center_y)

    def mass_3d_lens(self, r, theta_E, gamma, q, phi_G):
        """
        computes the spherical power-law mass enclosed (with SPP routiune)
        :param r:
        :param theta_E:
        :param gamma:
        :param q:
        :param phi_G:
        :return:
        """
        return self.spp.mass_3d_lens(r, theta_E, gamma)

    def convert_params(self, theta_E, gamma, q):
        """

        :param theta_E: Einstein radius
        :param gamma: power law slope
        :param q: axis ratio
        :return:   prefactor to SPEMP profile for FASTELL
        """
        return self.spemd_smooth.convert_params(theta_E, gamma, q)
    def _import_class(self, lens_type, i, custom_class):

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIE_simple
            return NIE_simple()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE':
            from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
            return GaussianKappaEllipse()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(grid=False, min_grid_number=100)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'FOREGROUND_SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            self._foreground_shear = True
            self._foreground_shear_idex = i
            return Shear()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import coreBurkert
            return coreBurkert()
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class[i])
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Exemple #6
0
class TestNIE(object):
    """
        tests the Gaussian methods
        """
    def setup(self):
        from lenstronomy.LensModel.Profiles.nie import NIE
        from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
        from lenstronomy.LensModel.Profiles.sis import SIS
        self.nie = NIE()
        self.spemd = SPEMD_SMOOTH()
        self.sis = SIS()

    def test_function(self):
        y = np.array([1., 2])
        x = np.array([0., 0.])
        theta_E = 1.
        q = 0.9999
        s = 0.00001
        phi_G = 0
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)

        values = self.nie.function(x, y, theta_E, e1, e2, s_scale=s)
        delta_pot = values[1] - values[0]
        values_spemd = self.sis.function(x, y, theta_E)
        delta_pot_spemd = values_spemd[1] - values_spemd[0]
        npt.assert_almost_equal(delta_pot, delta_pot_spemd, decimal=4)
        if bool_test is True:
            q = 0.99
            s = 0.000001
            phi_G = 0
            e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
            values = self.nie.function(x, y, theta_E, e1, e2, s_scale=s)
            delta_pot = values[1] - values[0]
            gamma = 2.
            values_spemd = self.spemd.function(x,
                                               y,
                                               theta_E,
                                               gamma,
                                               e1,
                                               e2,
                                               s_scale=s)
            delta_pot_spemd = values_spemd[1] - values_spemd[0]
            npt.assert_almost_equal(delta_pot, delta_pot_spemd, decimal=2)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        theta_E = 1.
        q = 0.99999
        phi_G = 0
        s = 0.0000001
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.nie.derivatives(x, y, theta_E, e1, e2, s_scale=s)
        f_x_spemd, f_y_spemd = self.sis.derivatives(x, y, theta_E)
        npt.assert_almost_equal(f_x, f_x_spemd, decimal=4)
        npt.assert_almost_equal(f_y, f_y_spemd, decimal=4)
        if bool_test is True:
            q = 0.99
            s = 0.000001
            phi_G = 0
            e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
            f_x, f_y = self.nie.derivatives(x, y, theta_E, e1, e2, s_scale=s)
            gamma = 2.
            f_x_spemd, f_y_spemd = self.spemd.derivatives(x,
                                                          y,
                                                          theta_E,
                                                          gamma,
                                                          e1,
                                                          e2,
                                                          s_scale=s)
            print(f_x / f_x_spemd, 'ratio deflections')
            print(1 + (1 - q) / 2)
            npt.assert_almost_equal(f_x, f_x_spemd, decimal=2)
            npt.assert_almost_equal(f_y, f_y_spemd, decimal=2)

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        theta_E = 1.
        q = 0.999999
        phi_G = 0
        s = 0.0000001
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy, f_xy = self.nie.hessian(x, y, theta_E, e1, e2, s_scale=s)
        f_xx_spemd, f_yy_spemd, f_xy_spemd = self.sis.hessian(x, y, theta_E)
        npt.assert_almost_equal(f_xx, f_xx_spemd, decimal=4)
        npt.assert_almost_equal(f_yy, f_yy_spemd, decimal=4)
        npt.assert_almost_equal(f_xy, f_xy_spemd, decimal=4)
Exemple #7
0
 def __init__(self):
     self.s2 = 0.00000001
     self.spp = SPP()
     self.spemd_smooth = SPEMD_SMOOTH()
Exemple #8
0
 def test_bounds(self):
     from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
     profile = SPEMD_SMOOTH()
     theta_E, gamma, q, phi_G, s_scale = profile._parameter_constraints(
         theta_E=-1, s_scale=0, gamma=3, q=2, phi_G=0)
     assert theta_E == 0
Exemple #9
0
class TestSPEMD(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
        self.SPEMD_SMOOT = SPEMD_SMOOTH()
        from lenstronomy.LensModel.Profiles.nie import NIE
        self.NIE = NIE()

    def test_function(self):
        phi_E = 1.
        gamma = 2.
        q = 0.999
        phi_G = 1.
        s_scale = 0.1
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        x = np.array([1., 2])
        y = np.array([2, 0])
        values = self.SPEMD_SMOOT.function(x, y, phi_E, gamma, e1, e2, s_scale)
        if fastell4py_bool:
            values_nie = self.NIE.function(x, y, phi_E, e1, e2, s_scale)
            delta_f = values[0] - values[1]
            delta_f_nie = values_nie[0] - values_nie[1]
            npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5)
        else:
            npt.assert_almost_equal(values, 0, decimal=5)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 2.
        q = 0.7
        phi_G = 1.
        s_scale = 0.1
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD_SMOOT.derivatives(x, y, phi_E, gamma, e1, e2,
                                                s_scale)
        if fastell4py_bool:
            f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2,
                                                    s_scale)
            #TODO test with higher precision, convention of theta_E might be slightly different from NIE with SPEMD
            npt.assert_almost_equal(f_x, f_x_nie, decimal=2)
            npt.assert_almost_equal(f_y, f_y_nie, decimal=2)
        else:
            npt.assert_almost_equal(f_x, 0, decimal=7)
            npt.assert_almost_equal(f_y, 0, decimal=7)

    def test_hessian(self):
        x = np.array([1.])
        y = np.array([2.])
        phi_E = 1.
        gamma = 2.
        q = 0.9
        phi_G = 1.
        s_scale = 0.1
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy, f_xy = self.SPEMD_SMOOT.hessian(x, y, phi_E, gamma, e1, e2,
                                                    s_scale)
        if fastell4py_bool:
            f_xx_nie, f_yy_nie, f_xy_nie = self.NIE.hessian(
                x, y, phi_E, e1, e2, s_scale)
            npt.assert_almost_equal(f_xx, f_xx_nie, decimal=3)
            npt.assert_almost_equal(f_yy, f_yy_nie, decimal=3)
            npt.assert_almost_equal(f_xy, f_xy_nie, decimal=3)
        else:
            npt.assert_almost_equal(f_xx, 0, decimal=7)
            npt.assert_almost_equal(f_yy, 0, decimal=7)
            npt.assert_almost_equal(f_xy, 0, decimal=7)

    def test_bounds(self):
        theta_E, gamma, q, phi_G, s_scale = self.SPEMD_SMOOT._parameter_constraints(
            theta_E=-1, s_scale=0, gamma=3, q=2, phi_G=0)
        assert theta_E == 0

    def test_is_not_empty(self):
        func = self.SPEMD_SMOOT.is_not_empty

        assert func(0.1, 0.2)
        assert func([0.1], [0.2])
        assert func((0.1, 0.3), (0.2, 0.4))
        assert func(np.array([0.1]), np.array([0.2]))
        assert not func([], [])
        assert not func(np.array([]), np.array([]))
Exemple #10
0
class TestNIE(object):
    """
    tests the Gaussian methods
    """
    def setup(self):

        self.nie = NIE()
        self.spemd = SPEMD_SMOOTH()
        self.sis = SIS()

    def test_function(self):
        y = np.array([1., 2])
        x = np.array([0., 0.])
        theta_E = 1.
        q = 0.9999
        s = 0.00001
        phi_G = 0
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)

        values = self.nie.function(x, y, theta_E, e1, e2, s_scale=s)
        delta_pot = values[1] - values[0]
        values_spemd = self.sis.function(x, y, theta_E)
        delta_pot_spemd = values_spemd[1] - values_spemd[0]
        npt.assert_almost_equal(delta_pot, delta_pot_spemd, decimal=4)
        if bool_test is True:
            q = 0.99
            s = 0.000001
            phi_G = 0
            e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
            values = self.nie.function(x, y, theta_E, e1, e2, s_scale=s)
            delta_pot = values[1] - values[0]
            gamma = 2.
            values_spemd = self.spemd.function(x,
                                               y,
                                               theta_E,
                                               gamma,
                                               e1,
                                               e2,
                                               s_scale=s)
            delta_pot_spemd = values_spemd[1] - values_spemd[0]
            npt.assert_almost_equal(delta_pot, delta_pot_spemd, decimal=2)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        theta_E = 1.
        q = 0.99999
        phi_G = 0
        s = 0.0000001
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.nie.derivatives(x, y, theta_E, e1, e2, s_scale=s)
        f_x_spemd, f_y_spemd = self.sis.derivatives(x, y, theta_E)
        npt.assert_almost_equal(f_x, f_x_spemd, decimal=4)
        npt.assert_almost_equal(f_y, f_y_spemd, decimal=4)
        if bool_test is True:
            q = 0.99
            s = 0.000001
            phi_G = 0
            e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
            f_x, f_y = self.nie.derivatives(x, y, theta_E, e1, e2, s_scale=s)
            gamma = 2.
            f_x_spemd, f_y_spemd = self.spemd.derivatives(x,
                                                          y,
                                                          theta_E,
                                                          gamma,
                                                          e1,
                                                          e2,
                                                          s_scale=s)
            print(f_x / f_x_spemd, 'ratio deflections')
            print(1 + (1 - q) / 2)
            npt.assert_almost_equal(f_x, f_x_spemd, decimal=2)
            npt.assert_almost_equal(f_y, f_y_spemd, decimal=2)

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        theta_E = 1.
        q = 0.999999
        phi_G = 0
        s = 0.0000001
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy, f_xy = self.nie.hessian(x, y, theta_E, e1, e2, s_scale=s)
        f_xx_spemd, f_yy_spemd, f_xy_spemd = self.sis.hessian(x, y, theta_E)
        npt.assert_almost_equal(f_xx, f_xx_spemd, decimal=4)
        npt.assert_almost_equal(f_yy, f_yy_spemd, decimal=4)
        npt.assert_almost_equal(f_xy, f_xy_spemd, decimal=4)

    def test_convergence2surface_brightness(self):
        from lenstronomy.LightModel.Profiles.nie import NIE as NIE_Light
        nie_light = NIE_Light()
        kwargs = {'e1': 0.3, 'e2': -0.05, 's_scale': 0.5}
        x, y = util.make_grid(numPix=10, deltapix=0.1)
        f_xx, f_yy, f_xy = self.nie.hessian(x, y, theta_E=1, **kwargs)
        kappa = 1 / 2. * (f_xx + f_yy)
        flux = nie_light.function(x, y, amp=1, **kwargs)
        npt.assert_almost_equal(kappa / np.sum(kappa),
                                flux / np.sum(flux),
                                decimal=5)

    def test_static(self):
        x, y = 1., 1.
        phi_G, q = 0.3, 0.8
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_lens = {'theta_E': 1., 's_scale': .1, 'e1': e1, 'e2': e2}
        f_ = self.nie.function(x, y, **kwargs_lens)
        self.nie.set_static(**kwargs_lens)
        f_static = self.nie.function(x, y, **kwargs_lens)
        npt.assert_almost_equal(f_, f_static, decimal=8)
        self.nie.set_dynamic()
        kwargs_lens = {'theta_E': 2., 's_scale': .1, 'e1': e1, 'e2': e2}
        f_dyn = self.nie.function(x, y, **kwargs_lens)
        assert f_dyn != f_static
Exemple #11
0
class SPEMD(LensProfileBase):
    """
    class for power law ellipse mass density profile.
    This class effectively calls the class SPEMD_SMOOTH with a fixed and very small central smoothing scale
    to perform the numerical integral using the FASTELL code by Renan Barkana.


    The Einstein ring parameter converts to the definition used by GRAVLENS as follow:
    (theta_E / theta_E_gravlens) = sqrt[ (1+q^2) / (2 q) ]
    """
    param_names = ['theta_E', 'gamma', 'e1', 'e2', 'center_x', 'center_y']
    lower_limit_default = {'theta_E': 0, 'gamma': 1.5, 'e1': -0.5, 'e2': -0.5, 'center_x': -100, 'center_y': -100}
    upper_limit_default = {'theta_E': 100, 'gamma': 2.5, 'e1': 0.5, 'e2': 0.5, 'center_x': 100, 'center_y': 100}

    def __init__(self):
        self.s2 = 0.00000001  # smoothing scale as used to numerically compute a power-law profile
        self.spp = SPP()
        self.spemd_smooth = SPEMD_SMOOTH()
        super(SPEMD, self).__init__()

    def function(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
        """

        :param x: x-coordinate (angle)
        :param y: y-coordinate (angle)
        :param theta_E: Einstein radius (angle), pay attention to specific definition!
        :param gamma: logarithmic slope of the power-law profile. gamma=2 corresponds to isothermal
        :param e1: eccentricity component
        :param e2: eccentricity component
        :param center_x: x-position of lens center
        :param center_y: y-position of lens center
        :return: lensing potential
        """
        return self.spemd_smooth.function(x, y, theta_E, gamma, e1, e2, self.s2, center_x, center_y)

    def derivatives(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
        """

        :param x: x-coordinate (angle)
        :param y: y-coordinate (angle)
        :param theta_E: Einstein radius (angle), pay attention to specific definition!
        :param gamma: logarithmic slope of the power-law profile. gamma=2 corresponds to isothermal
        :param e1: eccentricity component
        :param e2: eccentricity component
        :param center_x: x-position of lens center
        :param center_y: y-position of lens center
        :return: deflection angles alpha_x, alpha_y
        """
        return self.spemd_smooth.derivatives(x, y, theta_E, gamma, e1, e2, self.s2, center_x, center_y)

    def hessian(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
        """

        :param x: x-coordinate (angle)
        :param y: y-coordinate (angle)
        :param theta_E: Einstein radius (angle), pay attention to specific definition!
        :param gamma: logarithmic slope of the power-law profile. gamma=2 corresponds to isothermal
        :param e1: eccentricity component
        :param e2: eccentricity component
        :param center_x: x-position of lens center
        :param center_y: y-position of lens center
        :return: Hessian components f_xx, f_yy, f_xy
        """
        return self.spemd_smooth.hessian(x, y, theta_E, gamma, e1, e2, self.s2, center_x, center_y)

    def mass_3d_lens(self, r, theta_E, gamma, e1=None, e2=None):
        """
        computes the spherical power-law mass enclosed (with SPP routine)
        :param r: radius within the mass is computed
        :param theta_E: Einstein radius
        :param gamma: power-law slope
        :param e1: eccentricity component (not used)
        :param e2: eccentricity component (not used)
        :return: mass enclosed a 3D radius r
        """
        return self.spp.mass_3d_lens(r, theta_E, gamma)
Exemple #12
0
 def __init__(self):
     self.s2 = 0.00000001  # smoothing scale as used to numerically compute a power-law profile
     self.spp = SPP()
     self.spemd_smooth = SPEMD_SMOOTH()
     super(SPEMD, self).__init__()
Exemple #13
0
 def setup(self):
     from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
     self.SPEMD_SMOOT = SPEMD_SMOOTH()
     from lenstronomy.LensModel.Profiles.nie import NIE
     self.NIE = NIE()
    def __init__(self, lens_model_list, **kwargs):
        """

        :param lens_model_list: list of strings with lens model names
        :param foreground_shear: bool, when True, models a foreground non-linear shear distortion
        """
        self.func_list = []
        self._foreground_shear = False
        for i, lens_type in enumerate(lens_model_list):
            if lens_type == 'SHEAR':
                from lenstronomy.LensModel.Profiles.external_shear import ExternalShear
                self.func_list.append(ExternalShear())
            elif lens_type == 'CONVERGENCE':
                from lenstronomy.LensModel.Profiles.mass_sheet import MassSheet
                self.func_list.append(MassSheet())
            elif lens_type == 'FLEXION':
                from lenstronomy.LensModel.Profiles.flexion import Flexion
                self.func_list.append(Flexion())
            elif lens_type == 'POINT_MASS':
                from lenstronomy.LensModel.Profiles.point_mass import PointMass
                self.func_list.append(PointMass())
            elif lens_type == 'SIS':
                from lenstronomy.LensModel.Profiles.sis import SIS
                self.func_list.append(SIS())
            elif lens_type == 'SIS_TRUNCATED':
                from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
                self.func_list.append(SIS_truncate())
            elif lens_type == 'SIE':
                from lenstronomy.LensModel.Profiles.sie import SIE
                self.func_list.append(SIE())
            elif lens_type == 'SPP':
                from lenstronomy.LensModel.Profiles.spp import SPP
                self.func_list.append(SPP())
            elif lens_type == 'NIE':
                from lenstronomy.LensModel.Profiles.nie import NIE
                self.func_list.append(NIE())
            elif lens_type == 'NIE_SIMPLE':
                from lenstronomy.LensModel.Profiles.nie import NIE_simple
                self.func_list.append(NIE_simple())
            elif lens_type == 'CHAMELEON':
                from lenstronomy.LensModel.Profiles.chameleon import Chameleon
                self.func_list.append(Chameleon())
            elif lens_type == 'DOUBLE_CHAMELEON':
                from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
                self.func_list.append(DoubleChameleon())
            elif lens_type == 'SPEP':
                from lenstronomy.LensModel.Profiles.spep import SPEP
                self.func_list.append(SPEP())
            elif lens_type == 'SPEMD':
                from lenstronomy.LensModel.Profiles.spemd import SPEMD
                self.func_list.append(SPEMD())
            elif lens_type == 'SPEMD_SMOOTH':
                from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
                self.func_list.append(SPEMD_SMOOTH())
            elif lens_type == 'NFW':
                from lenstronomy.LensModel.Profiles.nfw import NFW
                self.func_list.append(NFW(**kwargs))
            elif lens_type == 'NFW_ELLIPSE':
                from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
                self.func_list.append(
                    NFW_ELLIPSE(interpol=False,
                                num_interp_X=1000,
                                max_interp_X=100))
            elif lens_type == 'TNFW':
                from lenstronomy.LensModel.Profiles.tnfw import TNFW
                self.func_list.append(TNFW())
            elif lens_type == 'SERSIC':
                from lenstronomy.LensModel.Profiles.sersic import Sersic
                self.func_list.append(Sersic())
            elif lens_type == 'SERSIC_ELLIPSE':
                from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
                self.func_list.append(SersicEllipse())
            elif lens_type == 'PJAFFE':
                from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
                self.func_list.append(PJaffe())
            elif lens_type == 'PJAFFE_ELLIPSE':
                from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
                self.func_list.append(PJaffe_Ellipse())
            elif lens_type == 'HERNQUIST':
                from lenstronomy.LensModel.Profiles.hernquist import Hernquist
                self.func_list.append(Hernquist())
            elif lens_type == 'HERNQUIST_ELLIPSE':
                from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
                self.func_list.append(Hernquist_Ellipse())
            elif lens_type == 'GAUSSIAN':
                from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
                self.func_list.append(Gaussian())
            elif lens_type == 'GAUSSIAN_KAPPA':
                from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
                self.func_list.append(GaussianKappa())
            elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
                from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
                self.func_list.append(GaussianKappaEllipse())
            elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
                from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
                self.func_list.append(MultiGaussianKappa())
            elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
                from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
                self.func_list.append(MultiGaussianKappaEllipse())
            elif lens_type == 'INTERPOL':
                from lenstronomy.LensModel.Profiles.interpol import Interpol_func
                self.func_list.append(
                    Interpol_func(grid=False, min_grid_number=100))
            elif lens_type == 'INTERPOL_SCALED':
                from lenstronomy.LensModel.Profiles.interpol import Interpol_func_scaled
                self.func_list.append(
                    Interpol_func_scaled(grid=False, min_grid_number=100))
            elif lens_type == 'SHAPELETS_POLAR':
                from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
                self.func_list.append(PolarShapelets())
            elif lens_type == 'SHAPELETS_CART':
                from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
                self.func_list.append(CartShapelets())
            elif lens_type == 'DIPOLE':
                from lenstronomy.LensModel.Profiles.dipole import Dipole
                self.func_list.append(Dipole())
            elif lens_type == 'FOREGROUND_SHEAR':
                from lenstronomy.LensModel.Profiles.external_shear import ExternalShear
                self.func_list.append(ExternalShear())
                self._foreground_shear = True
                self._foreground_shear_idex = i
            else:
                raise ValueError('%s is not a valid lens model' % lens_type)

        self._model_list = lens_model_list
Exemple #15
0
    def setup(self):

        self.nie = NIE()
        self.spemd = SPEMD_SMOOTH()
        self.sis = SIS()
    def _import_class(lens_type, custom_class, z_lens=None, z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol()
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Exemple #17
0
class TestSPEMD(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
        self.SPEMD_SMOOT = SPEMD_SMOOTH()
        from lenstronomy.LensModel.Profiles.nie import NIE
        self.NIE = NIE()

    def test_function(self):
        phi_E = 1.
        gamma = 2.
        q = 0.999
        phi_G = 1.
        s_scale = 0.1
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        x = np.array([1., 2])
        y = np.array([2, 0])
        values = self.SPEMD_SMOOT.function(x, y, phi_E, gamma, e1, e2, s_scale)
        if fastell4py_bool:
            values_nie = self.NIE.function(x, y, phi_E, e1, e2, s_scale)
            delta_f = values[0] - values[1]
            delta_f_nie = values_nie[0] - values_nie[1]
            npt.assert_almost_equal(delta_f, delta_f_nie, decimal=5)
        else:
            npt.assert_almost_equal(values, 0, decimal=5)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 2.
        q = 1.
        phi_G = 1.
        s_scale = 0.1
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD_SMOOT.derivatives(x, y, phi_E, gamma, e1, e2,
                                                s_scale)
        if fastell4py_bool:
            f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2,
                                                    s_scale)
            npt.assert_almost_equal(f_x, f_x_nie, decimal=4)
            npt.assert_almost_equal(f_y, f_y_nie, decimal=4)
        else:
            npt.assert_almost_equal(f_x, 0, decimal=7)
            npt.assert_almost_equal(f_y, 0, decimal=7)

        q = 0.7
        phi_G = 1.
        s_scale = 0.001
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD_SMOOT.derivatives(x, y, phi_E, gamma, e1, e2,
                                                s_scale)
        if fastell4py_bool:
            f_x_nie, f_y_nie = self.NIE.derivatives(x, y, phi_E, e1, e2,
                                                    s_scale)
            npt.assert_almost_equal(f_x, f_x_nie, decimal=4)
            npt.assert_almost_equal(f_y, f_y_nie, decimal=4)
        else:
            npt.assert_almost_equal(f_x, 0, decimal=7)
            npt.assert_almost_equal(f_y, 0, decimal=7)

    def test_hessian(self):
        x = np.array([1.])
        y = np.array([2.])
        phi_E = 1.
        gamma = 2.
        q = 0.9
        phi_G = 1.
        s_scale = 0.001
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy, f_xy = self.SPEMD_SMOOT.hessian(x, y, phi_E, gamma, e1, e2,
                                                    s_scale)
        if fastell4py_bool:
            f_xx_nie, f_yy_nie, f_xy_nie = self.NIE.hessian(
                x, y, phi_E, e1, e2, s_scale)
            npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4)
            npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4)
            npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4)
        else:
            npt.assert_almost_equal(f_xx, 0, decimal=7)
            npt.assert_almost_equal(f_yy, 0, decimal=7)
            npt.assert_almost_equal(f_xy, 0, decimal=7)

    def test_bounds(self):
        compute_bool = self.SPEMD_SMOOT._parameter_constraints(q_fastell=-1,
                                                               gam=-1,
                                                               s2=-1,
                                                               q=-1)
        assert compute_bool is False

    def test_is_not_empty(self):
        func = self.SPEMD_SMOOT.is_not_empty

        assert func(0.1, 0.2)
        assert func([0.1], [0.2])
        assert func((0.1, 0.3), (0.2, 0.4))
        assert func(np.array([0.1]), np.array([0.2]))
        assert not func([], [])
        assert not func(np.array([]), np.array([]))