Exemple #1
0
def init_map_match(map_con, infile_path, outfile_path):
    matcher = DistanceMatcher(
        map_con,
        max_dist=45,  # meter
        min_prob_norm=0.1,
        obs_noise=25,  # meter
        dist_noise=25,  # meter
        non_emitting_states=True)

    df = pd.read_csv(infile_path)
    nodes = []
    prev_nodes = []
    all_nodes = []
    for _, row in df.iterrows():
        polyline = ast.literal_eval(row['POLYLINE'])
        prev_nodes = nodes
        for i in range(len(polyline)):
            polyline[i] = tuple(polyline[i][::-1])
        try:
            matcher.match(polyline)
            nodes = matcher.path_pred_onlynodes
            if set(nodes) == set(prev_nodes):
                continue
            all_nodes.append(nodes)
        except:
            continue
    with open(f'{outfile_path}', 'w') as outfile:
        json.dump(all_nodes, outfile, indent=2)
    print(f'Finished file: {infile_path}, found {len(all_nodes)} trips')
Exemple #2
0
def test_path2_dist():
    mapdb, path1, path2, path_sol = setup_map()

    matcher = DistanceMatcher(mapdb,
                              max_dist_init=1,
                              min_prob_norm=0.5,
                              obs_noise=0.5,
                              dist_noise=0.5,
                              non_emitting_states=True)
    matcher.match(path2, unique=True)
    path_pred = matcher.path_pred_onlynodes
    if directory:
        from leuvenmapmatching import visualization as mmviz
        matcher.print_lattice_stats()
        matcher.print_lattice()
        # with (directory / 'lattice_path2.gv').open('w') as ofile:
        #     matcher.lattice_dot(file=ofile)
        mmviz.plot_map(mapdb,
                       matcher=matcher,
                       show_labels=True,
                       show_matching=True,
                       filename=str(directory /
                                    "test_nonemitting_test_path2_dist.png"))
    assert path_pred == path_sol, "Nodes not equal:\n{}\n{}".format(
        path_pred, path_sol)
def test_path3_dist():
    path = [(3.0, 3.2), (3.1, 3.8), (3.0, 4.0), (3.1, 4.3), (3.1, 4.6),
            (3.0, 4.9)]
    path_sol = ['E', 'F']
    mapdb = InMemMap("map",
                     graph={
                         "E": ((3, 3), ["F"]),
                         "F": ((3, 5), ["E"]),
                     },
                     use_latlon=False)

    matcher = DistanceMatcher(mapdb,
                              max_dist=None,
                              min_prob_norm=0.0001,
                              max_dist_init=1,
                              obs_noise=0.25,
                              obs_noise_ne=10,
                              non_emitting_states=True)
    matcher.match(path, unique=True)
    path_pred = matcher.path_pred_onlynodes
    if directory:
        from leuvenmapmatching import visualization as mmviz
        mmviz.plot_map(mapdb,
                       matcher=matcher,
                       show_labels=True,
                       show_matching=True,
                       filename=str(directory / "test_path3_dist.png"))
        print("Path through lattice:\n" +
              "\n".join(m.label for m in matcher.lattice_best))
    assert path_pred == path_sol, "Nodes not equal:\n{}\n{}".format(
        path_pred, path_sol)
def test_path_outlier_dist():
    path = [(0.8, 0.7), (0.9, 0.7), (1.1, 1.0), (1.2, 1.5), (1.2, 1.6), (1.1, 2.0),
            (1.1, 2.3), (1.3, 2.9), (1.2, 3.1), (1.5, 3.2), (1.8, 3.5), (2.0, 3.7),
            (2.1, 3.3), (2.4, 3.2), (2.6, 3.1), (2.9, 3.1), (3.0, 3.2), (3.1, 3.8),
            (3.0, 4.0), (3.1, 4.3), (3.1, 4.6), (3.0, 4.9)]
    path_sol = ['A', 'B', 'D', 'C', 'E', 'F']
    path.insert(13, (2.3, 1.8))
    mapdb = InMemMap("map", graph={
        "A": ((1, 1), ["B", "C", "X"]),
        "B": ((1, 3), ["A", "C", "D", "K"]),
        "C": ((2, 2), ["A", "B", "D", "E", "X", "Y"]),
        "D": ((2, 4), ["B", "C", "F", "E", "K", "L"]),
        "E": ((3, 3), ["C", "D", "F", "Y"]),
        "F": ((3, 5), ["D", "E", "L"]),
        "X": ((2, 0), ["A", "C", "Y"]),
        "Y": ((3, 1), ["X", "C", "E"]),
        "K": ((1, 5), ["B", "D", "L"]),
        "L": ((2, 6), ["K", "D", "F"])
    }, use_latlon=False)

    matcher = DistanceMatcher(mapdb, max_dist=None, min_prob_norm=0.0001,
                              max_dist_init=1, obs_noise=0.5, obs_noise_ne=10,
                              non_emitting_states=True)
    matcher.match(path)
    path_pred = matcher.path_pred_onlynodes
    if directory:
        from leuvenmapmatching import visualization as mmviz
        mmviz.plot_map(mapdb, matcher=matcher,
                       show_labels=True, show_matching=True, show_graph=True,
                       filename=str(directory / "test_path_outlier_dist.png"))
    # TODO: Smoothing the observation distances could eliminate the outlier
    assert path_pred == path_sol, "Nodes not equal:\n{}\n{}".format(path_pred, path_sol)
def test_path1_dist():
    path = [(0.8, 0.7), (0.9, 0.7), (1.1, 1.0), (1.2, 1.5), (1.2, 1.6),
            (1.1, 2.0), (1.1, 2.3), (1.3, 2.9), (1.2, 3.1), (1.5, 3.2),
            (1.8, 3.5), (2.0, 3.7), (2.1, 3.3), (2.4, 3.2), (2.6, 3.1),
            (2.9, 3.1), (3.0, 3.2), (3.1, 3.8), (3.0, 4.0), (3.1, 4.3),
            (3.1, 4.6), (3.0, 4.9)]
    # path_sol = ['A', ('A', 'B'), 'B', ('B', 'D'), 'D', ('D', 'E'), 'E', ('E', 'F')]
    path_sol_nodes = ['A', 'B', 'D', 'E', 'F']
    mapdb = InMemMap("map",
                     graph={
                         "A": ((1, 1), ["B", "C"]),
                         "B": ((1, 3), ["A", "C", "D"]),
                         "C": ((2, 2), ["A", "B", "D", "E"]),
                         "D": ((2, 4), ["B", "C", "D", "E"]),
                         "E": ((3, 3), ["C", "D", "F"]),
                         "F": ((3, 5), ["D", "E"])
                     },
                     use_latlon=False)

    matcher = DistanceMatcher(mapdb,
                              max_dist=None,
                              min_prob_norm=None,
                              obs_noise=0.5,
                              non_emitting_states=False)
    matcher.match(path)
    if directory:
        from leuvenmapmatching import visualization as mmviz
        mmviz.plot_map(mapdb,
                       matcher=matcher,
                       show_labels=True,
                       show_matching=True,
                       filename=str(directory / "test_path1_dist.png"))
    nodes_pred = matcher.path_pred_onlynodes
    assert nodes_pred == path_sol_nodes, f"Nodes not equal:\n{nodes_pred}\n{path_sol_nodes}"
def test_route_slice1():
    if directory:
        import matplotlib.pyplot as plt
    # load path, map and route from database
    nodes, map_con, route = load_data()
    # zoom_path = True
    # get a slice of route
    route_slice = route[2657:2662]

    # init matcher object
    matcher = DistanceMatcher(map_con,
                              min_prob_norm=0.001,
                              max_dist=200,
                              dist_noise=6,
                              dist_noise_ne=12,
                              obs_noise=30,
                              obs_noise_ne=150,
                              non_emitting_states=True)

    # matching
    matcher.match(route_slice)

    path_pred = matcher.path_pred_onlynodes
    path_sol = [
        172815, 172816, 172817, 172818, 172819, 172820, 172821, 172822, 172823,
        172824, 172825, 172826, 172827, 172828, 172829, 172830, 884148100261,
        172835, 172836, 172837, 884148100254, 172806, 884148100255, 172807
    ]  # Can change when building db

    assert len(path_pred) == len(path_sol)
def test_path4_dist_inc():
    map_con = InMemMap("mymap",
                       graph={
                           "A": ((1, 1), ["B", "C", "X"]),
                           "B": ((1, 3), ["A", "C", "D", "K"]),
                           "C": ((2, 2), ["A", "B", "D", "E", "X", "Y"]),
                           "D": ((2, 4), ["B", "C", "D", "E", "K", "L"]),
                           "E": ((3, 3), ["C", "D", "F", "Y"]),
                           "F": ((3, 5), ["D", "E", "L"]),
                           "X": ((2, 0), ["A", "C", "Y"]),
                           "Y": ((3, 1), ["X", "C", "E"]),
                           "K": ((1, 5), ["B", "D", "L"]),
                           "L": ((2, 6), ["K", "D", "F"])
                       },
                       use_latlon=False)

    path = [(0.8, 0.7), (0.9, 0.7), (1.1, 1.0), (1.2, 1.5), (1.2, 1.6),
            (1.1, 2.0), (1.1, 2.3), (1.3, 2.9), (1.2, 3.1), (1.5, 3.2),
            (1.8, 3.5), (2.0, 3.7), (2.3, 3.5), (2.4, 3.2), (2.6, 3.1),
            (2.9, 3.1), (3.0, 3.2), (3.1, 3.8), (3.0, 4.0), (3.1, 4.3),
            (3.1, 4.6), (3.0, 4.9)]

    matcher = DistanceMatcher(map_con,
                              max_dist=2,
                              obs_noise=1,
                              min_prob_norm=0.5)
    matcher.match(path[:5])
    if directory:
        from leuvenmapmatching import visualization as mmviz
        mmviz.plot_map(map_con,
                       matcher=matcher,
                       show_labels=True,
                       show_matching=True,
                       show_graph=True,
                       filename=str(directory / "test_path4_dist_inc_1.png"))

    matcher.match(path, expand=True)
    nodes = matcher.path_pred_onlynodes
    if directory:
        from leuvenmapmatching import visualization as mmviz
        mmviz.plot_map(map_con,
                       matcher=matcher,
                       show_labels=True,
                       show_matching=True,
                       show_graph=True,
                       filename=str(directory / "test_path4_dist_inc_2.png"))
    nodes_sol = ['X', 'A', 'B', 'D', 'E', 'F']
    assert nodes == nodes_sol, "Nodes not equal:\n{}\n{}".format(
        nodes, nodes_sol)
def test_path1():
    prepare_files()
    track = gpx_to_path(track_fn)
    track = [loc[:2] for loc in track]
    track = track[:5]
    track_int = interpolate_path(track, 5)
    map_con = create_map_from_xml(osm_fn)

    matcher = DistanceMatcher(map_con,
                              max_dist=50,
                              obs_noise=50,
                              min_prob_norm=0.1)
    states, last_idx = matcher.match(track_int)

    if directory:
        # matcher.print_lattice_stats()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        use_osm=True,
                        zoom_path=True,
                        show_graph=True,
                        filename=str(directory / "test_path_latlon_path1.png"))
    assert len(states) == len(track_int), f"Path ({len(track_int)}) not fully matched by best path ({len(states)}), " + \
                                          f"last index = {last_idx}"
    states_sol = [(2963305939, 249348325), (2963305939, 249348325),
                  (2963305939, 249348325), (2963305939, 249348325),
                  (2963305939, 249348325), (2963305939, 249348325),
                  (249348325, 1545679243), (249348325, 1545679243),
                  (1545679243, 3663115134), (1545679243, 3663115134),
                  (1545679243, 3663115134), (3663115134, 1545679251),
                  (1545679251, 20910628), (1545679251, 20910628),
                  (1545679251, 20910628), (1545679251, 20910628),
                  (20910628, 3663115130)]
    assert states == states_sol, f"Got states: {states}"
Exemple #9
0
def test_path3_dist():
    path = [(0, 1), (0.65, 7.5), (1.9, 10.1)]
    path_sol = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
    mapdb = InMemMap("map", graph={
        "A": ((0.00, 1), ["B"]),
        "B": ((0.00, 3), ["A", "C"]),
        "C": ((0.70, 3), ["B", "D"]),
        "D": ((1.00, 5), ["C", "E"]),
        "E": ((1.00, 6), ["D", "F"]),
        "F": ((0.70, 7), ["E", "G"]),
        "G": ((0.00, 8), ["F", "H"]),
        "H": ((0.0, 10), ["G", "I"]),
        "I": ((2.0, 10), ["H"])
    }, use_latlon=False)
    matcher = DistanceMatcher(mapdb, max_dist_init=0.2,
                              obs_noise=0.5, obs_noise_ne=2, dist_noise=0.5,
                              non_emitting_states=True)
    states, lastidx = matcher.match(path)
    path_pred = matcher.path_pred_onlynodes
    if directory:
        from leuvenmapmatching import visualization as mmviz
        mmviz.plot_map(mapdb, matcher=matcher, show_labels=True, show_matching=True, linewidth=2,
                       filename=str(directory / "test_path_3_dist.png"))
    assert path_pred == path_sol, f"Nodes not equal:\n{path_pred}\n{path_sol}"

    for obs_idx, m in enumerate(matcher.lattice_best):  # type: Tuple[int, DistanceMatching]
        state = m.shortkey  # tuple indicating edge
        ne_str = "e" if m.is_emitting() else "ne"  # state is emitting or not
        p1_str = "{:>5.2f}-{:<5.2f}".format(*m.edge_m.pi)  # best matching location on graph
        p2_str = "{:>5.2f}-{:<5.2f}".format(*m.edge_o.pi)  # best matching location on track
        print(f"{obs_idx:<2} | {state} | {ne_str:<2} | {p1_str} | {p2_str}")
def test_path1_full():
    prepare_files()
    track = gpx_to_path(track_fn)
    track = [loc[:2] for loc in track]
    track_int = interpolate_path(track, 5)
    map_con = create_map_from_xml(osm_fn,
                                  include_footways=True,
                                  include_parking=True)

    matcher = DistanceMatcher(map_con,
                              max_dist=50,
                              obs_noise=50,
                              min_prob_norm=0.1)
    states, last_idx = matcher.match(track_int)

    if directory:
        # matcher.print_lattice_stats()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        use_osm=True,
                        zoom_path=True,
                        show_graph=True,
                        filename=str(directory / "test_path_latlon_path1.png"))
    assert len(states) == len(track_int), f"Path ({len(track_int)}) not fully matched by best path ({len(states)}), " + \
                                          f"last index = {last_idx}"
Exemple #11
0
def example1():
    map_con = InMemMap("mymap",
                       graph={
                           "A": ((1, 1), ["B", "C", "X"]),
                           "B": ((1, 3), ["A", "C", "D", "K"]),
                           "C": ((2, 2), ["A", "B", "D", "E", "X", "Y"]),
                           "D": ((2, 4), ["B", "C", "F", "E", "K", "L"]),
                           "E": ((3, 3), ["C", "D", "F", "Y"]),
                           "F": ((3, 5), ["D", "E", "L"]),
                           "X": ((2, 0), ["A", "C", "Y"]),
                           "Y": ((3, 1), ["X", "C", "E"]),
                           "K": ((1, 5), ["B", "D", "L"]),
                           "L": ((2, 6), ["K", "D", "F"])
                       },
                       use_latlon=False)

    path = [(0.8, 0.7), (0.9, 0.7), (1.1, 1.0), (1.2, 1.5), (1.2, 1.6),
            (1.1, 2.0), (1.1, 2.3), (1.3, 2.9), (1.2, 3.1), (1.5, 3.2),
            (1.8, 3.5), (2.0, 3.7), (2.3, 3.5), (2.4, 3.2), (2.6, 3.1),
            (2.9, 3.1), (3.0, 3.2), (3.1, 3.8), (3.0, 4.0), (3.1, 4.3),
            (3.1, 4.6), (3.0, 4.9)]

    matcher = DistanceMatcher(map_con,
                              max_dist=2,
                              obs_noise=1,
                              min_prob_norm=0.5)
    states, _ = matcher.match(path)
    nodes = matcher.path_pred_onlynodes

    print("States\n------")
    print(states)
    print("Nodes\n------")
    print(nodes)
    print("")
    matcher.print_lattice_stats()
def test_path_outlier2():
    path = [(0.8, 0.7), (0.9, 0.7), (1.1, 1.0), (1.2, 1.5), (1.2, 1.6), (1.1, 2.0),
            (1.1, 2.3), (1.3, 2.9), (1.2, 3.1), (1.5, 3.2), (1.8, 3.5), (2.0, 3.7),
            (2.1, 3.3), (2.4, 3.2), (2.6, 3.1), (2.9, 3.1), (3.0, 3.2), (3.1, 3.8),
            (3.0, 4.0), (3.1, 4.3), (3.1, 4.6), (3.0, 4.9)]
    path.insert(13, (2.3, -3.0))
    mapdb = InMemMap("map", graph={
        "A": ((1, 1), ["B", "C", "X"]),
        "B": ((1, 3), ["A", "C", "D", "K"]),
        "C": ((2, 2), ["A", "B", "D", "E", "X", "Y"]),
        "D": ((2, 4), ["B", "C", "F", "E", "K", "L"]),
        "E": ((3, 3), ["C", "D", "F", "Y"]),
        "F": ((3, 5), ["D", "E", "L"]),
        "X": ((2, 0), ["A", "C", "Y"]),
        "Y": ((3, 1), ["X", "C", "E"]),
        "K": ((1, 5), ["B", "D", "L"]),
        "L": ((2, 6), ["K", "D", "F"])
    }, use_latlon=False)

    matcher = DistanceMatcher(mapdb, max_dist=None, min_prob_norm=0.1,
                            max_dist_init=1, obs_noise=0.25, obs_noise_ne=1,
                            non_emitting_states=True)
    _, last_idx = matcher.match(path, unique=True)
    if directory:
        # matcher.print_lattice_stats()
        # matcher.print_lattice()
        from leuvenmapmatching import visualization as mmviz
        # with (directory / 'lattice.gv').open('w') as ofile:
        #     matcher.lattice_dot(file=ofile)
        mmviz.plot_map(mapdb, matcher=matcher, show_labels=True, show_matching=True,
                       filename=str(directory / "test_path_outlier2.png"))
    assert last_idx == 12
def test_bug2():
    this_path = Path(os.path.realpath(__file__)).parent / "rsrc" / "bug2"
    edges_fn = this_path / "edgesrl.csv"
    nodes_fn = this_path / "nodesrl.csv"
    path_fn = this_path / "path.csv"

    logger.debug(f"Reading map ...")
    mmap = SqliteMap("road_network", use_latlon=True, dir=this_path)

    path = []
    with path_fn.open("r") as path_f:
        reader = csv.reader(path_f, delimiter=',')
        for row in reader:
            lat, lon = [float(coord) for coord in row]
            path.append((lat, lon))
    node_cnt = 0
    with nodes_fn.open("r") as nodes_f:
        reader = csv.reader(nodes_f, delimiter=',')
        for row in reader:
            nid, lonlat, _ = row
            nid = int(nid)
            lon, lat = [float(coord) for coord in lonlat[1:-1].split(",")]
            mmap.add_node(nid, (lat, lon), ignore_doubles=True, no_index=True, no_commit=True)
            node_cnt += 1
    edge_cnt = 0
    with edges_fn.open("r") as edges_f:
        reader = csv.reader(edges_f, delimiter=',')
        for row in reader:
            _eid, nid1, nid2, pid = [int(val) for val in row]
            mmap.add_edge(nid1, nid2, edge_type=0, path=pid, no_index=True, no_commit=True)
            edge_cnt += 1
    logger.debug(f"... done: {node_cnt} nodes and {edge_cnt} edges")
    logger.debug("Indexing ...")
    mmap.reindex_nodes()
    mmap.reindex_edges()
    logger.debug("... done")

    matcher = DistanceMatcher(mmap, min_prob_norm=0.001,
                              max_dist=200, obs_noise=4.07,
                              non_emitting_states=True)
    # path = path[:2]
    nodes, idx = matcher.match(path, unique=True)
    path_pred = matcher.path_pred
    if directory:
        import matplotlib.pyplot as plt
        matcher.print_lattice_stats()
        logger.debug("Plotting post map ...")
        fig = plt.figure(figsize=(100, 100))
        ax = fig.get_axes()
        mm_viz.plot_map(mmap, matcher=matcher, use_osm=True, ax=ax,
                        show_lattice=False, show_labels=True, show_graph=False, zoom_path=True,
                        show_matching=True)
        plt.savefig(str(directory / "test_bug1.png"))
        plt.close(fig)
        logger.debug("... done")
def test_bug1():
    map_con = SqliteMap("map", use_latlon=True)
    map_con.add_nodes([(1, (47.590439915657, -122.238368690014)),
                       (2, (47.5910192728043, -122.239519357681)),
                       (3, (47.5913706421852, -122.240168452263))])
    map_con.add_edges([(1, 2), (2, 3)])
    path = [
        # (47.59043333, -122.2384167),
        (47.59058333, -122.2387),
        (47.59071667, -122.2389833),
        (47.59086667, -122.2392667),
        (47.59101667, -122.23955),
        (47.59115, -122.2398333)
    ]
    path_sol = [(1, 2), (2, 3)]
    matcher = DistanceMatcher(map_con,
                              min_prob_norm=0.001,
                              max_dist=200,
                              obs_noise=4.07,
                              non_emitting_states=True)
    matcher.match(path, unique=True)
    path_pred = matcher.path_pred
    if directory:
        import matplotlib.pyplot as plt
        matcher.print_lattice_stats()
        logger.debug("Plotting post map ...")
        fig = plt.figure(figsize=(100, 100))
        ax = fig.get_axes()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        use_osm=True,
                        ax=ax,
                        show_lattice=False,
                        show_labels=True,
                        show_graph=True,
                        zoom_path=True,
                        show_matching=True)
        plt.savefig(str(directory / "test_newson_bug1.png"))
        plt.close(fig)
        logger.debug("... done")
    assert path_pred == path_sol, f"Edges not equal:\n{path_pred}\n{path_sol}"
Exemple #15
0
def map_matching_osm():
    track = gpx_to_path("mytrack.gpx")
    matcher = DistanceMatcher(
        map_con,
        max_dist=100,
        max_dist_init=25,  # meter
        min_prob_norm=0.001,
        non_emitting_length_factor=0.75,
        obs_noise=50,
        obs_noise_ne=75,  # meter
        dist_noise=50,  # meter
        non_emitting_states=True)
    states, lastidx = matcher.match(track)
    return
def dis_matcher(map_con, track):
    matcher = DistanceMatcher(map_con,
                              max_dist=200,
                              min_prob_norm=0.0001,
                              non_emitting_length_factor=0.5,
                              obs_noise=10,
                              obs_noise_ne=10,
                              dist_noise=100,
                              max_lattice_width=5,
                              avoid_goingback=True,
                              non_emitting_states=True)
    states, last_idx = matcher.match(track)

    nodes = matcher.path_pred_onlynodes

    return matcher, nodes
def test_path2_proj():
    prepare_files()
    map_con_latlon = create_map_from_xml(osm2_fn)
    map_con = map_con_latlon.to_xy()
    track = [map_con.latlon2yx(p[0], p[1]) for p in gpx_to_path(track2_fn)]
    matcher = DistanceMatcher(map_con,
                              max_dist=300,
                              max_dist_init=25,
                              min_prob_norm=0.0001,
                              non_emitting_length_factor=0.95,
                              obs_noise=50,
                              obs_noise_ne=50,
                              dist_noise=50,
                              max_lattice_width=5,
                              non_emitting_states=True)
    states, last_idx = matcher.match(track, unique=False)
    nodes = matcher.path_pred_onlynodes
    if directory:
        matcher.print_lattice_stats()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        path=track,
                        use_osm=False,
                        show_graph=True,
                        show_matching=True,
                        show_labels=5,
                        filename=str(directory /
                                     "test_path_latlon_path2_proj.png"))
    nodes_sol = [
        2634474831, 1096512242, 3051083902, 1096512239, 1096512241, 1096512240,
        1096508366, 1096508372, 16483861, 1096508360, 159656075, 1096508382,
        16483862, 3051083898, 16526535, 3060597381, 3060515059, 16526534,
        16526532, 1274158119, 16526540, 3060597377, 16526541, 16424220,
        1233373340, 613125597, 1076057753
    ]
    nodes_sol2 = [
        1096512242, 3051083902, 1096512239, 1096512241, 1096512240, 159654664,
        1096508373, 1096508381, 16483859, 1096508369, 159654663, 1096508363,
        16483862, 3051083898, 16526535, 3060597381, 3060515059, 16526534,
        16526532, 611867918, 3060725817, 16483866, 3060725817, 611867918,
        16526532, 1274158119, 16526540, 3060597377, 16526541, 16424220,
        1233373340, 613125597, 1076057753
    ]
    assert (nodes
            == nodes_sol) or (nodes
                              == nodes_sol2), f"Nodes do not match: {nodes}"
Exemple #18
0
def test_path2():
    prepare_files()
    map_con = create_map(osm2_fn)
    track = [(p[0], p[1]) for p in gpx_to_path(track2_fn)]
    matcher = DistanceMatcher(map_con, max_dist=300, max_dist_init=25, min_prob_norm=0.0001,
                              non_emitting_length_factor=0.75,
                              obs_noise=50, obs_noise_ne=75,
                              dist_noise=30,
                              max_lattice_width=5,
                              non_emitting_states=True)
    states, last_idx = matcher.match(track, unique=False)
    nodes = matcher.path_pred_onlynodes
    if directory:
        mm_viz.plot_map(map_con, matcher=matcher, nodes=nodes, path=track, z=17, use_osm=True,
                        show_graph=True, show_matching=True,
                        filename=str(directory / "test_path_latlon_path2.png"))
    nodes_sol = [2634474831, 1096512242, 3051083902, 1096512239, 1096512241, 1096512240, 1096508366, 1096508372,
                 16483861, 3051083900, 16483864, 16483865, 3060515058, 16526534, 16526532, 1274158119, 16526540,
                 3060597377, 16526541, 16424220, 1233373340, 613125597, 1076057753]

    assert nodes == nodes_sol, f"Nodes do not match: {nodes}"
def map_matching(map_con, df, s=0, n=3):
    trj_ids = df.trj_id.unique()
    for i in range(s, n):
        df_path = df[df['trj_id'] == trj_ids[i]]
        df_trj = df_path[['rawlat', 'rawlng']]
        track = []
        max_dist = 2
        for j in range(len(df_trj)):
            track.append((df_trj.iloc[j, 0], df_trj.iloc[j, 1]))

        while True:
            try:
                matcher = DistanceMatcher(
                    map_con,
                    max_dist=max_dist,
                    max_dist_init=1000000,  # meter
                    min_prob_norm=0.001,
                    non_emitting_length_factor=0.75,
                    obs_noise=50,
                    obs_noise_ne=75,  # meter
                    dist_noise=50,  # meter
                    non_emitting_states=True)
                states, lastidx = matcher.match(track)
                nodes = matcher.path_pred_onlynodes
                a = states[-1]
                break
            except:
                max_dist += max_dist * 0.5
                print(max_dist)
        # print('current trajectory ID: {}'.format(trj_ids[i]))
        with open("file.txt", "a+") as output:
            for j in range(len(nodes)):
                trj_data = [
                    trj_ids[i], map_con.graph[nodes[j]][0][0],
                    map_con.graph[nodes[j]][0][1]
                ]
                output.write('{}\n'.format(str(trj_data)))
        print(i)
Exemple #20
0
def example2():
    path = [(1, 0), (7.5, 0.65), (10.1, 1.9)]
    mapdb = InMemMap("mymap",
                     graph={
                         "A": ((1, 0.00), ["B"]),
                         "B": ((3, 0.00), ["A", "C"]),
                         "C": ((4, 0.70), ["B", "D"]),
                         "D": ((5, 1.00), ["C", "E"]),
                         "E": ((6, 1.00), ["D", "F"]),
                         "F": ((7, 0.70), ["E", "G"]),
                         "G": ((8, 0.00), ["F", "H"]),
                         "H": ((10, 0.0), ["G", "I"]),
                         "I": ((10, 2.0), ["H"])
                     },
                     use_latlon=False)
    matcher = DistanceMatcher(mapdb,
                              max_dist_init=0.2,
                              obs_noise=1,
                              obs_noise_ne=10,
                              non_emitting_states=True,
                              only_edges=True)
    states, _ = matcher.match(path)
    nodes = matcher.path_pred_onlynodes

    print("States\n------")
    print(states)
    print("Nodes\n------")
    print(nodes)
    print("")
    matcher.print_lattice_stats()

    mmviz.plot_map(mapdb,
                   matcher=matcher,
                   show_labels=True,
                   show_matching=True,
                   filename="output.png")
Exemple #21
0
def match(track,
          graph,
          streetmap,
          matcher_alg='DistanceMatcher',
          max_dist=200,
          max_dist_init=100,
          min_prob_norm=0.001,
          non_emitting_length_factor=0.75,
          obs_noise=50,
          obs_noise_ne=75,
          dist_noise=50,
          non_emitting_edgeid=False):
    '''
        This function match the floating car track.

        Parameters:
        ___________
            track: np.array of tuples (x,y)
                Array of the floating car track coordinates.
            graph: OSMNX road network
                Osmnx road network of the area of study
            streetmap: InMem map
                LeuvenMapMatching InMem map of the graph    
            mather_alg: string
                Name of the matcher algorithm of choice
            max_dist: int
                maximum distance from the track
            max_dist_init: int
                initial maximum distance  
            min_prob_norm: float
                Minmum normalized probability
            non_emitting_length_factor: float
                The factor no emmiting state that it takes
            obs_noise: int
                Standard Deviation of noise
            obs_noise_ne: int
                Standard Deviation of noise in non emitting state
            dist_noise: int
                distance of the noise
            non_emitting_edgeid: boolean
                If allow on-emitting states

        Returns:
        __________
            edge_id: np.array of tuples
                An array consisting tuples, (start node id, end node id)
            last_idx: int
                Last index of the point mapped
            track_corr: np.array
                array of map matched coordinates
            route: np.array
                array of computed route of the map matched track        

    '''
    # get leuvenmapmatching InMem mam from the road network
    #streetmap = get_InMemMap(graph)

    # select the matcher of choise
    if (matcher_alg == 'DistanceMatcher'):
        matcher = DistanceMatcher(
            streetmap,
            max_dist=max_dist,
            max_dist_init=max_dist_init,
            min_prob_norm=min_prob_norm,
            non_emitting_length_factor=non_emitting_length_factor,
            obs_noise=obs_noise,
            obs_noise_ne=obs_noise_ne,
            dist_noise=dist_noise,
            non_emitting_edgeid=non_emitting_edgeid)

    elif (matcher_alg == 'NewsonKrummMatcher'):
        matcher = NewsonKrummMatcher(
            streetmap,
            max_dist=max_dist,
            max_dist_init=max_dist_init,
            min_prob_norm=min_prob_norm,
            non_emitting_length_factor=non_emitting_length_factor,
            obs_noise=obs_noise,
            obs_noise_ne=obs_noise_ne,
            dist_noise=dist_noise,
            non_emitting_edgeid=non_emitting_edgeid)

    elif (matcher_alg == 'SimpleMatcher'):
        matcher = SimpleMatcher(
            streetmap,
            max_dist=max_dist,
            max_dist_init=max_dist_init,
            min_prob_norm=min_prob_norm,
            non_emitting_length_factor=non_emitting_length_factor,
            obs_noise=obs_noise,
            obs_noise_ne=obs_noise_ne,
            dist_noise=dist_noise,
            non_emitting_edgeid=non_emitting_edgeid)

    else:
        print('No matcher selected')
        return

    # Perform the mapmatching
    edge_ids, last_idx = matcher.match(track)

    # Reference ellipsoid for distance
    geod = Geod(ellps='WGS84')
    proj_dist = np.zeros(len(track))

    # edgeid refers to edges id (node1_id, node2_id) where the GPS point is projected
    lat_corr, lon_corr = [], []
    lat_nodes = matcher.lattice_best
    for idx, m in enumerate(lat_nodes):
        if (idx == len(track)):
            break
        lat, lon = m.edge_m.pi[:2]
        lat_corr.append(lat)
        lon_corr.append(lon)
        # print(idx)
        _, _, distance = geod.inv(track[idx][1], track[idx][0], lon, lat)
        proj_dist[idx] += distance

    # construct array of cordinates
    track_corr = np.column_stack((lat_corr, lon_corr))
    # get the route from the projected cordinates
    route = compute_route(streetmap, track_corr, edge_ids)

    # returns
    return edge_ids, last_idx, track_corr, route
def test_route():
    if directory:
        import matplotlib.pyplot as plt
    else:
        plt = None
    paths, map_con, route = load_data()
    route = [(lat, lon) for lat, lon in route]
    zoom_path = True
    # zoom_path = slice(2645, 2665)
    slice_route = None
    # slice_route = slice(650, 750)
    # slice_route = slice(2657, 2662)  # First location where some observations are missing
    # slice_route = slice(2770, 2800)  # Observations are missing
    # slice_route = slice(2910, 2950)  # Interesting point
    # slice_route = slice(2910, 2929)  # Interesting point
    # slice_route = slice(6825, 6833)  # Outlier observation
    slice_route = slice(6300, )

    # if directory is not None:
    #     logger.debug("Plotting pre map ...")
    #     mm_viz.plot_map(map_con_latlon, path=route_latlon, use_osm=True,
    #                     show_lattice=False, show_labels=False, show_graph=False, zoom_path=zoom_path,
    #                     filename=str(directory / "test_newson_route.png"))
    #     logger.debug("... done")

    matcher = DistanceMatcher(map_con,
                              min_prob_norm=0.0001,
                              max_dist=200,
                              dist_noise=15,
                              dist_noise_ne=30,
                              obs_noise=30,
                              obs_noise_ne=150,
                              non_emitting_states=True)

    if slice_route is None:
        pkl_fn = this_path / "nodes_pred.pkl"
        if pkl_fn.exists():
            with pkl_fn.open("rb") as pkl_file:
                logger.debug(f"Reading predicted nodes from pkl file")
                route_nodes = pickle.load(pkl_file)
        else:
            matcher.match(route)
            route_nodes = matcher.path_pred_onlynodes
            with pkl_fn.open("wb") as pkl_file:
                pickle.dump(route_nodes, pkl_file)
        from leuvenmapmatching.util.evaluation import route_mismatch_factor
        print(route_nodes[:10])
        # route_edges = map_con.nodes_to_paths(route_nodes)
        # print(route_edges[:10])
        grnd_paths, _ = zip(*paths)
        print(grnd_paths[:10])
        route_paths = map_con.nodes_to_paths(route_nodes)
        print(route_paths[:10])

        logger.debug(f"Compute route mismatch factor")
        factor, cnt_matches, cnt_mismatches, total_length, mismatches, _, _ = \
            route_mismatch_factor(map_con, route_paths, grnd_paths,window=None, keep_mismatches=True)
        logger.debug(
            f"factor = {factor}, "
            f"cnt_matches = {cnt_matches}/{cnt_mismatches} of {len(grnd_paths)}/{len(route_paths)}, "
            f"total_length = {total_length}\n"
            f"mismatches = " + " | ".join(str(v) for v in mismatches))
    else:
        _, last_idx = matcher.match(route[slice_route])
        logger.debug(f"Last index = {last_idx}")

    # matcher.match(route[2657:2662])  # First location where some observations are missing
    # matcher.match(route[2770:2800])  # Observations are missing
    # matcher.match(route[2910:2950])  # Interesting point
    # matcher.match(route[2910:2929])  # Interesting point
    # matcher.match(route[6000:])
    path_pred = matcher.path_pred_onlynodes

    if directory:
        matcher.print_lattice_stats()
        logger.debug("Plotting post map ...")
        fig = plt.figure(figsize=(200, 200))
        ax = fig.get_axes()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        use_osm=True,
                        ax=ax,
                        show_lattice=False,
                        show_labels=True,
                        zoom_path=zoom_path,
                        show_matching=True,
                        show_graph=False)
        plt.savefig(str(directory / "test_newson_route_matched.png"))
        plt.close(fig)
        logger.debug("... done")
        logger.debug("Best path:")
        for m in matcher.lattice_best:
            logger.debug(m)

    print(path_pred)
def test_bug2():
    from leuvenmapmatching.util.openstreetmap import locations_to_map
    map_con = SqliteMap("map", use_latlon=True, dir=directory)
    path = [(50.87205, 4.66089), (50.874550000000006, 4.672980000000001),
            (50.87538000000001, 4.67698),
            (50.875800000000005, 4.6787600000000005),
            (50.876520000000006, 4.6818),
            (50.87688000000001, 4.683280000000001), (50.87814, 4.68733),
            (50.87832, 4.68778), (50.87879, 4.68851),
            (50.87903000000001, 4.68895),
            (50.879560000000005, 4.689170000000001),
            (50.87946, 4.6900900000000005),
            (50.879290000000005, 4.6909600000000005),
            (50.87906, 4.6921800000000005), (50.87935, 4.6924),
            (50.879720000000006, 4.69275), (50.88002, 4.6930700000000005),
            (50.880430000000004, 4.693440000000001),
            (50.880660000000006, 4.69357),
            (50.880660000000006, 4.6936100000000005),
            (50.88058, 4.694640000000001), (50.88055000000001, 4.69491),
            (50.88036, 4.696160000000001), (50.88009, 4.697550000000001),
            (50.87986, 4.6982800000000005),
            (50.879720000000006, 4.698790000000001),
            (50.87948, 4.699730000000001),
            (50.87914000000001, 4.6996400000000005),
            (50.87894000000001, 4.6995000000000005),
            (50.878800000000005, 4.699350000000001),
            (50.8785, 4.6991000000000005), (50.87841, 4.6990300000000005)]
    locations_to_map(path, map_con, filename=directory / "osm.xml")
    path_sol = [(5777282112, 2633552218), (2633552218, 5777282111),
                (5777282111, 5777282110), (5777282110, 1642021707),
                (1642021707, 71361087), (71361087, 71364203),
                (71364203, 1151697757), (1151697757, 1647339017),
                (1647339017, 1647339030), (1647339030, 2058510349),
                (2058510349, 2633552212), (2633552212, 1380538577),
                (1380538577, 1439572271), (1439572271, 836434313),
                (836434313, 2633771041), (2633771041, 5042874484),
                (5042874484, 5042874485), (5042874485, 2518922583),
                (2518922583, 2659762546), (2659762546, 5777282063),
                (5777282063, 2633771037), (2633771037, 2633771035),
                (2633771035, 2633771033), (2633771033, 1151668705),
                (1151668705, 2633771094), (2633771094, 1151668722),
                (1151668722, 1151668724), (1151668724, 5543948222),
                (5543948222, 2058481517), (2058481517, 16933576),
                (16933576, 5543948221), (5543948221, 2518923620),
                (2518923620, 5543948020), (5543948020, 5543948019),
                (5543948019, 18635886), (18635886, 18635887),
                (18635887, 1036909153), (1036909153, 2658942230),
                (2658942230, 1001099975), (1001099975, 16933574),
                (16933574, 1125604152), (1125604152, 5543948238),
                (5543948238, 1125604150), (1125604150, 1125604148),
                (1125604148, 2634195334), (2634195334, 2087854243),
                (2087854243, 5543948237), (5543948237, 160226603),
                (160226603, 180130266), (180130266, 5543948227),
                (5543948227, 5543948226), (5543948226, 1195681902),
                (1195681902, 101135392), (101135392, 2606704673),
                (2606704673, 18635977), (18635977, 1026111708),
                (1026111708, 1026111631), (1026111631, 16571375),
                (16571375, 2000680621), (2000680621, 999580042),
                (999580042, 16571370), (16571370, 2000680620),
                (2000680620, 5078692402), (5078692402, 5543948008),
                (5543948008, 16571371), (16571371, 999579936),
                (999579936, 2639836143), (2639836143, 5543948014),
                (5543948014, 5222992316), (5222992316, 30251323),
                (30251323, 159701080), (159701080, 3173217124),
                (3173217124, 1165209673), (1165209673, 1380538689),
                (1380538689, 2878334668), (2878334668, 2871137399),
                (2871137399, 2876902981), (2876902981, 2873624508),
                (2873624508, 2873624509), (2873624509, 2899666507),
                (2899666507, 2899666518), (2899666518, 2899666513),
                (2899666513, 2903073945), (2903073945, 2903073951),
                (2903073951, 1380538681), (1380538681, 2914810627),
                (2914810627, 2914810618), (2914810618, 2914810607),
                (2914810607, 2914810604), (2914810604, 2914810483),
                (2914810483, 2914810462), (2914810462, 2914810464),
                (2914810464, 1312433523), (1312433523, 20918594),
                (20918594, 2634267817), (2634267817, 2967425445),
                (2967425445, 3201523879), (3201523879, 157217466),
                (157217466, 2963305939), (2963305939, 3201523877),
                (3201523877, 3889275909), (3889275909, 3889275897),
                (3889275897, 157255077), (157255077, 30251882),
                (30251882, 157245624), (157245624, 1150903673),
                (1150903673, 4504936404)]
    matcher = DistanceMatcher(map_con,
                              min_prob_norm=0.001,
                              max_dist=200,
                              obs_noise=4.07,
                              non_emitting_states=True)
    nodes, idx = matcher.match(path, unique=True)
    path_pred = matcher.path_pred
    if directory:
        import matplotlib.pyplot as plt
        matcher.print_lattice_stats()
        logger.debug("Plotting post map ...")
        fig = plt.figure(figsize=(100, 100))
        ax = fig.get_axes()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        use_osm=True,
                        ax=ax,
                        show_lattice=False,
                        show_labels=True,
                        show_graph=False,
                        zoom_path=True,
                        show_matching=True)
        plt.savefig(str(directory / "test_newson_bug1.png"))
        plt.close(fig)
        logger.debug("... done")
    assert path_pred == path_sol, f"Edges not equal:\n{path_pred}\n{path_sol}"
Exemple #24
0
def test_bug2():
    this_path = Path(os.path.realpath(__file__)).parent / "rsrc" / "bug2"
    edges_fn = this_path / "edgesrl.csv"
    nodes_fn = this_path / "nodesrl.csv"
    path_fn = this_path / "path.csv"
    zip_fn = this_path / "leuvenmapmatching_testdata.zip"

    if not (edges_fn.exists() and nodes_fn.exists() and path_fn.exists()):
        import requests
        url = 'https://people.cs.kuleuven.be/wannes.meert/leuvenmapmatching/leuvenmapmatching_testdata.zip'
        logger.debug("Download testfiles from kuleuven.be")
        r = requests.get(url, stream=True)
        with zip_fn.open('wb') as ofile:
            for chunk in r.iter_content(chunk_size=1024):
                if chunk:
                    ofile.write(chunk)
        import zipfile
        logger.debug("Unzipping leuvenmapmatching_testdata.zip")
        with zipfile.ZipFile(str(zip_fn), "r") as zip_ref:
            zip_ref.extractall(str(zip_fn.parent))

    logger.debug(f"Reading map ...")
    mmap = SqliteMap("road_network", use_latlon=True, dir=this_path)

    path = []
    with path_fn.open("r") as path_f:
        reader = csv.reader(path_f, delimiter=',')
        for row in reader:
            lat, lon = [float(coord) for coord in row]
            path.append((lat, lon))
    node_cnt = 0
    with nodes_fn.open("r") as nodes_f:
        reader = csv.reader(nodes_f, delimiter=',')
        for row in reader:
            nid, lonlat, _ = row
            nid = int(nid)
            lon, lat = [float(coord) for coord in lonlat[1:-1].split(",")]
            mmap.add_node(nid, (lat, lon), ignore_doubles=True, no_index=True, no_commit=True)
            node_cnt += 1
    edge_cnt = 0
    with edges_fn.open("r") as edges_f:
        reader = csv.reader(edges_f, delimiter=',')
        for row in reader:
            _eid, nid1, nid2, pid = [int(val) for val in row]
            mmap.add_edge(nid1, nid2, edge_type=0, path=pid, no_index=True, no_commit=True)
            edge_cnt += 1
    logger.debug(f"... done: {node_cnt} nodes and {edge_cnt} edges")
    logger.debug("Indexing ...")
    mmap.reindex_nodes()
    mmap.reindex_edges()
    logger.debug("... done")

    matcher = DistanceMatcher(mmap, min_prob_norm=0.001,
                              max_dist=200, obs_noise=4.07,
                              non_emitting_states=True)
    # path = path[:2]
    nodes, idx = matcher.match(path, unique=True)
    path_pred = matcher.path_pred
    if directory:
        import matplotlib.pyplot as plt
        matcher.print_lattice_stats()
        logger.debug("Plotting post map ...")
        fig = plt.figure(figsize=(100, 100))
        ax = fig.get_axes()
        mm_viz.plot_map(mmap, matcher=matcher, use_osm=True, ax=ax,
                        show_lattice=False, show_labels=True, show_graph=False, zoom_path=True,
                        show_matching=True)
        plt.savefig(str(directory / "test_bug1.png"))
        plt.close(fig)
        logger.debug("... done")
Exemple #25
0
from leuvenmapmatching.matcher.distance import DistanceMatcher
from leuvenmapmatching.map.inmem import InMemMap
from leuvenmapmatching import visualization as mmviz

path = [(1, 0), (7.5, 0.65), (10.1, 1.9)]
mapdb = InMemMap("mymap", graph={
    "A": ((1, 0.00), ["B"]),
    "B": ((3, 0.00), ["A", "C"]),
    "C": ((4, 0.70), ["B", "D"]),
    "D": ((5, 1.00), ["C", "E"]),
    "E": ((6, 1.00), ["D", "F"]),
    "F": ((7, 0.70), ["E", "G"]),
    "G": ((8, 0.00), ["F", "H"]),
    "H": ((10, 0.0), ["G", "I"]),
    "I": ((10, 2.0), ["H"])
}, use_latlon=False)
matcher = DistanceMatcher(mapdb, max_dist_init=0.2, obs_noise=1, obs_noise_ne=10,
                          non_emitting_states=True, only_edges=True)
states, _ = matcher.match(path)
nodes = matcher.path_pred_onlynodes

print("States\n------")
print(states)
print("Nodes\n------")
print(nodes)
print("")
matcher.print_lattice_stats()

mmviz.plot_map(mapdb, matcher=matcher,
              show_labels=True, show_matching=True
              filename="output.png")
Exemple #26
0
    def map_track_to_roads(cls,
                           track_positions,
                           map_matching_graph,
                           stepsize=5,
                           obs_noise=5,
                           obs_noise_ne=5,
                           max_dist_init=1000,
                           max_dist=5,
                           min_prob_norm=0.5,
                           non_emitting_states=False,
                           non_emitting_length_factor=0.75,
                           max_lattice_width=10,
                           dist_noise=5,
                           dist_noise_ne=5,
                           restrained_ne=True,
                           avoid_goingback=True):
        """Map a series of track_positions to a road network using a map_matching_graph

        :param track_positions: a numpy array of [x, y, timestamp]
        where x and y are assumed to be in meters

        :param map_matching_graph: The map matching graph for a road network

        :return: An array of road edges and corresponding timestamps.
        When a road mapping cannot be made for a given track position,
        a 'None' is inserted
        """
        track_arc_lengths_m = np.hstack([
            0,
            np.cumsum(
                np.sqrt(np.sum(np.diff(track_positions[:, :2], axis=0)**2, 1)))
        ])
        total_track_length_m = track_arc_lengths_m[-1]
        if total_track_length_m == 0.0:
            print(f"Total track length must be > 0.0, skipping!")
            return [], []
        elif total_track_length_m > 100000:
            print(f"Total track length is abnormally large "
                  f"({total_track_length_m} meters), skipping!")
            return [], []

        # We need to remove positions with duplicate x, y to be able
        # to interpolate (always keeping the latter of the two; we
        # never throw away the last point)
        ind = np.hstack([np.diff(track_arc_lengths_m), 1]) != 0

        interp_f = interp1d(track_arc_lengths_m[ind],
                            track_positions[ind],
                            axis=0)

        steps = np.linspace(0, total_track_length_m,
                            int(np.ceil(total_track_length_m / stepsize)) + 1)

        interp_positions = interp_f(steps)

        node_path = []
        k = 0
        matcher = DistanceMatcher(
            map_matching_graph,
            obs_noise=obs_noise,
            obs_noise_ne=obs_noise_ne,
            max_dist_init=max_dist_init,
            max_dist=max_dist,
            min_prob_norm=min_prob_norm,
            non_emitting_states=non_emitting_states,
            non_emitting_length_factor=non_emitting_length_factor,
            max_lattice_width=max_lattice_width,
            dist_noise=dist_noise,
            dist_noise_ne=dist_noise_ne,
            restrained_ne=restrained_ne,
            avoid_goingback=avoid_goingback)
        while k < len(interp_positions):

            node_pathi, ind = matcher.match(interp_positions[k:, :2])
            if len(node_pathi) == 0:
                node_path.append(None)
                k += 1
            else:
                node_path.extend(node_pathi)
                k += ind + 1

        return node_path, interp_positions[:, 2]
def test_path3():
    prepare_files()
    track = [(50.87881, 4.698930000000001), (50.87899, 4.69836),
             (50.87905000000001, 4.698110000000001),
             (50.879000000000005, 4.69793), (50.87903000000001, 4.69766),
             (50.87906, 4.697500000000001), (50.87908, 4.6973),
             (50.879110000000004, 4.69665), (50.87854, 4.696420000000001),
             (50.878440000000005, 4.696330000000001),
             (50.878370000000004, 4.696140000000001), (50.8783, 4.69578),
             (50.87832, 4.69543), (50.87767, 4.695530000000001),
             (50.87763, 4.695080000000001), (50.87758, 4.6948300000000005),
             (50.877480000000006, 4.69395),
             (50.877500000000005, 4.693700000000001),
             (50.877520000000004, 4.69343),
             (50.877610000000004, 4.692670000000001),
             (50.87776, 4.6917800000000005), (50.87783, 4.69141),
             (50.87744000000001, 4.6908900000000004),
             (50.87736, 4.690790000000001), (50.877300000000005, 4.69078),
             (50.876650000000005, 4.6907000000000005), (50.87597, 4.69066),
             (50.875820000000004, 4.69068), (50.87561, 4.6907700000000006),
             (50.874430000000004, 4.69136),
             (50.874210000000005, 4.691490000000001), (50.87413, 4.69151),
             (50.87406000000001, 4.69151), (50.87397000000001, 4.69148),
             (50.87346, 4.6913800000000005), (50.87279, 4.691260000000001),
             (50.872490000000006, 4.69115), (50.87259, 4.6908900000000004),
             (50.87225, 4.690650000000001),
             (50.872080000000004, 4.6904900000000005),
             (50.871550000000006, 4.69125), (50.87097000000001, 4.69216),
             (50.87033, 4.69324), (50.87017, 4.6935400000000005),
             (50.87012000000001, 4.69373), (50.86997, 4.69406),
             (50.86981, 4.694520000000001), (50.86943, 4.69585),
             (50.868970000000004, 4.697500000000001),
             (50.868770000000005, 4.698130000000001), (50.86863, 4.6985),
             (50.86844000000001, 4.69899), (50.868140000000004, 4.69977),
             (50.86802, 4.70023), (50.867920000000005, 4.70078),
             (50.86787, 4.701180000000001), (50.86784, 4.70195),
             (50.86786000000001, 4.702310000000001),
             (50.86791, 4.702870000000001), (50.86836, 4.7052700000000005),
             (50.86863, 4.7064900000000005),
             (50.86880000000001, 4.707210000000001),
             (50.869220000000006, 4.708410000000001),
             (50.869400000000006, 4.70891), (50.86959, 4.709350000000001),
             (50.86995, 4.71004), (50.87006, 4.71021),
             (50.870900000000006, 4.7112300000000005),
             (50.872260000000004, 4.712890000000001), (50.87308, 4.71389),
             (50.873430000000006, 4.714300000000001),
             (50.873560000000005, 4.71441),
             (50.873740000000005, 4.714530000000001),
             (50.874280000000006, 4.714740000000001),
             (50.876250000000006, 4.71544),
             (50.876490000000004, 4.7155700000000005),
             (50.876900000000006, 4.7158500000000005), (50.87709, 4.71598),
             (50.877190000000006, 4.716010000000001),
             (50.87751, 4.7160400000000005),
             (50.87782000000001, 4.7160400000000005), (50.87832, 4.71591),
             (50.87894000000001, 4.71567), (50.87975, 4.71536),
             (50.88004, 4.71525), (50.8804, 4.715070000000001),
             (50.88163, 4.71452), (50.881750000000004, 4.71447),
             (50.8819, 4.714390000000001), (50.882200000000005, 4.71415),
             (50.882470000000005, 4.7138800000000005),
             (50.883480000000006, 4.7127300000000005),
             (50.88552000000001, 4.710470000000001), (50.88624, 4.70966),
             (50.88635000000001, 4.7096100000000005),
             (50.886520000000004, 4.709580000000001),
             (50.88664000000001, 4.7095400000000005),
             (50.886750000000006, 4.709280000000001),
             (50.88684000000001, 4.70906), (50.886970000000005, 4.70898),
             (50.88705, 4.70887), (50.88714, 4.70868), (50.88743, 4.7079),
             (50.887840000000004, 4.7069), (50.88776000000001, 4.70687),
             (50.88765, 4.706790000000001), (50.887100000000004, 4.70627),
             (50.88702000000001, 4.70619),
             (50.886950000000006, 4.706040000000001),
             (50.886950000000006, 4.7058800000000005),
             (50.886970000000005, 4.705620000000001),
             (50.88711000000001, 4.70417), (50.88720000000001, 4.70324),
             (50.88723, 4.7027600000000005), (50.88709000000001, 4.70253),
             (50.886480000000006, 4.70148), (50.88636, 4.70131),
             (50.886050000000004, 4.70101), (50.88593, 4.70092),
             (50.885810000000006, 4.700880000000001),
             (50.88539, 4.7008600000000005), (50.88497, 4.70082),
             (50.88436, 4.70089), (50.88398, 4.70094),
             (50.883250000000004, 4.7010700000000005),
             (50.88271, 4.701160000000001), (50.88136, 4.70159),
             (50.881130000000006, 4.701790000000001),
             (50.880930000000006, 4.7020100000000005), (50.88078, 4.70223),
             (50.88046000000001, 4.70146), (50.88015000000001, 4.70101),
             (50.880030000000005, 4.700880000000001),
             (50.87997000000001, 4.70078), (50.879900000000006, 4.70061),
             (50.87984, 4.70052), (50.879960000000004, 4.70026)]
    track = track[:30]
    map_con = create_map_from_xml(osm3_fn)

    matcher = DistanceMatcher(map_con,
                              max_dist_init=30,
                              max_dist=50,
                              min_prob_norm=0.1,
                              obs_noise=10,
                              obs_noise_ne=20,
                              dist_noise=10,
                              non_emitting_states=True)
    states, last_idx = matcher.match(track)

    if directory:
        # matcher.print_lattice_stats()
        mm_viz.plot_map(map_con,
                        matcher=matcher,
                        use_osm=True,
                        zoom_path=True,
                        show_graph=False,
                        show_matching=True,
                        filename=str(directory / "test_path_latlon_path3.png"))
    nodes = matcher.path_pred_onlynodes
    nodes_sol = [
        3906576303, 1150903750, 4506996820, 4506996819, 4506996798, 3906576457,
        130147477, 3906576346, 231974072, 231974123, 1180606706, 19792164,
        19792172, 1180606683, 1180606709, 5236409057, 19792169, 5236409056,
        180241961, 180241975, 4506996259, 19792156, 5236409048, 180241625,
        180241638, 231953030, 241928030, 241928031, 83796665, 231953028,
        1125556965, 1380538625, 1824115892, 4909655515, 16571387, 16737662,
        16571388, 179425214, 3705540990, 4567021046
    ]
    assert nodes == nodes_sol, f"Nodes do not match: {nodes}"