lgb_params = { 'n_estimators': 10000, 'learning_rate': 0.05, 'num_leaves': 20, 'max_depth': 8, 'colsample_bytree': 'auto', 'subsample': 1, # 'reg_alpha': 0.04, # 'reg_lambda': 0.075, 'reg_lambda': 100, 'min_split_gain': 0.5, # 'min_child_weight': 10, 'min_child_samples': 50, 'random_state': 71, # 'boosting_type': 'dart', 'silent': -1, 'verbose': -1, 'n_jobs': -1, 'metric': 'auc', # 'is_unbalance': True, } fit_params = { 'eval_metric': 'auc', 'early_stopping_rounds': 250, 'verbose': 100, } if __name__ == '__main__': run(NAME, feats, lgb_params, fit_params, fill=-9999)
# 'prev_null_count', 'prev_amount_to_main' ] lgb_params = { 'n_estimators': 10000, 'learning_rate': 0.03, 'num_leaves': 20, 'max_depth': 8, 'colsample_bytree': 0.3, 'subsample': 0.8, 'reg_alpha': 0.04, 'reg_lambda': 0.075, 'min_split_gain': 0.02, 'min_child_weight': 10, 'random_state': 71, # 'boosting_type': 'dart', 'silent': -1, 'verbose': -1, 'n_jobs': -1, 'metric': 'auc', } fit_params = { 'eval_metric': 'auc', 'early_stopping_rounds': 300, 'verbose': 100, } if __name__ == '__main__': run(NAME, feats, lgb_params, fit_params)