Exemple #1
0
lgb_params = {
    'n_estimators': 10000,
    'learning_rate': 0.05,
    'num_leaves': 20,
    'max_depth': 8,
    'colsample_bytree': 'auto',
    'subsample': 1,
    # 'reg_alpha': 0.04,
    # 'reg_lambda': 0.075,
    'reg_lambda': 100,
    'min_split_gain': 0.5,
    # 'min_child_weight': 10,
    'min_child_samples': 50,
    'random_state': 71,
    # 'boosting_type': 'dart',
    'silent': -1,
    'verbose': -1,
    'n_jobs': -1,
    'metric': 'auc',
    # 'is_unbalance': True,
}

fit_params = {
    'eval_metric': 'auc',
    'early_stopping_rounds': 250,
    'verbose': 100,
}
if __name__ == '__main__':
    run(NAME, feats, lgb_params, fit_params, fill=-9999)
Exemple #2
0
    # 'prev_null_count', 'prev_amount_to_main'
]

lgb_params = {
    'n_estimators': 10000,
    'learning_rate': 0.03,
    'num_leaves': 20,
    'max_depth': 8,
    'colsample_bytree': 0.3,
    'subsample': 0.8,
    'reg_alpha': 0.04,
    'reg_lambda': 0.075,
    'min_split_gain': 0.02,
    'min_child_weight': 10,
    'random_state': 71,
    # 'boosting_type': 'dart',
    'silent': -1,
    'verbose': -1,
    'n_jobs': -1,
    'metric': 'auc',
}

fit_params = {
    'eval_metric': 'auc',
    'early_stopping_rounds': 300,
    'verbose': 100,
}

if __name__ == '__main__':
    run(NAME, feats, lgb_params, fit_params)