def init_cfg_and_env(): # parses command line arguments and build an ExperimentCfg object to contain them prs = get_arguments() cfg = ExperimentCfg() cfg.make_grad_cam_config(prs) environment = common.makeCustomizedGridEnv(cfg) obs_shape = environment.observation_space.shape act_n = environment.action_space.n cfg.OBS_SHAPE = obs_shape cfg.ACT_N = act_n return prs, cfg, environment
parser.add_argument("-plr", required=True, type=float, help="distilled policy learning rate") config = experiment_config.ExperimentCfg() config.make_i2a_config(parser) device = torch.device(config.DEVICE) writer = SummaryWriter(comment="_i2a_fc_" + config.build_name_for_i2a_writer()) saves_path = writer.logdir envs = [ common.makeCustomizedGridEnv(config) for _ in range(config.NUM_ENVS) ] test_env = common.makeCustomizedGridEnv(config) #sets seed on torch operations and on all environments common.set_seed(config.SEED, envs=envs) common.set_seed(config.SEED, envs=[test_env]) obs_shape = envs[0].observation_space.shape act_n = envs[0].action_space.n # net_policy = common.AtariA2C(obs_shape, act_n).to(device) net_policy = common.getNet(config) config.A2CNET = str(net_policy) net_em = models.environment_model.EnvironmentModel(obs_shape, act_n,
"--PLOT", default=False, required=False, help=" set to True to show plots during tests") parser.add_argument("-lr", required=False, type=float, help="learning rate") fig, _ = plt.subplots() config = ExperimentCfg() config.make_test_env_config(parser) device = torch.device(config.DEVICE) env = common.makeCustomizedGridEnv(config) device = torch.device("cuda") config.DEVICE = 'cuda' obs_shape = env.observation_space.shape act_n = env.action_space.n net = common.getNet(config) net.load_state_dict( torch.load(config.A2C_FN, map_location=lambda storage, loc: storage)) agent = ptan.agent.PolicyAgent( lambda x: net(x)[0], action_selector=ptan.actions.ProbabilityActionSelector(), apply_softmax=True, device=device)