def main(): """ Training """ opt = Options().parse() data = load_data(opt) model = load_model(opt, data) model.train()
def main(): """ Training """ opt = Options().parse() data = load_data(opt) # 所得到的data包括train_data和test_data,用data.train_data获取训练数据,data.valid_data获取测试数据。 model = load_model(opt, data) model.train()
def main(): """ Training """ torch.autograd.set_detect_anomaly(True) wandb.init(entity="wenxun", project="tutorial") opt = Options().parse() data = load_data(opt) model = load_model(opt, data) model.train()
def main(): """ Training """ opt = Options().parse() opt.print_freq = opt.batchsize seed(opt.manualseed) print("Seed:", str(torch.seed())) if opt.phase == "inference": opt.batchsize=1 data = load_data(opt) model = load_model(opt, data) if opt.phase == "inference": model.inference() else: if opt.path_to_weights: model.test() else: train_start = time.time() model.train() train_time = time.time() - train_start print (f'Train time: {train_time} secs')
def main(): """ Training """ opt = Options().parse() data = load_data(opt) load_then_export_model(opt, data)