def makeNewAreaDataset(): new_data = rawdata.RawData.load(locNames='untrain', special_layers='all', new_data='not_none') newDataSet = dataset.Dataset(new_data, dataset.Dataset.vulnerablePixels) pointLst = newDataSet.toListTest(newDataSet.points) # ptList = masterDataSet.sample(sampleEvenly=False) # pointLst = random.sample(pointLst, SAMPLE_SIZE) test = dataset.Dataset(new_data, pointLst) return test
def openDatasets(): data = rawdata.load() masterDataSet = dataset.Dataset(data, dataset.Dataset.vulnerablePixels) ptList = masterDataSet.sample(sampleEvenly=False) # masterDataSet.points = dataset.Dataset.toDict(ptList) trainPts, validatePts, testPts = util.partition(ptList, ratios=[.6,.7]) train = dataset.Dataset(data, trainPts) validate = dataset.Dataset(data, validatePts) test = dataset.Dataset(data, testPts) return train, validate, test
def openDatasets(): data = rawdata.RawData.load(locNames='all', special_layers='all') masterDataSet = dataset.Dataset( data, dataset.Dataset.vulnerablePixels ) #this loops through vulnerablePixels for each location... should grab all veg image sample_size = 100 print("SAMPLE SIZE: ", sample_size) ptList = masterDataSet.sample(goalNumber=sample_size, sampleEvenly=False) #goalNumber=sample_size, trainPts, validatePts, testPts = util.partition(ptList, ratios=[.7, .8]) #.85,.99 train = dataset.Dataset(data, trainPts) validate = dataset.Dataset(data, validatePts) test = dataset.Dataset(data, testPts) return train, validate, test
def makeSmallDatasets(pass_arr): data = pass_arr[0] set_type = pass_arr[1] type_str = pass_arr[2] return_dict = {} return_dict[type_str] = dataset.Dataset(data, set_type) return return_dict
def get_data(batch_size, data_name, data_root='./my_ai/'): data_loader = data.DataLoader( dataset.Dataset( path=data_root, transform_data=transforms.Compose([ # transforms.RandomHorizontalFlip(), # channel_change(), color_change(), ToTensor(), tensor_pad(28) ]), transform_labels=transforms.Compose([ # transforms.RandomHorizontalFlip(), ToTensor(), tensor_pad(28) ]), data_name=data_name ), batch_size=batch_size, shuffle=True, num_workers=1 ) return data_loader
def test(): ds = dataset.Dataset() # ds2 = ds.copy() # ds.save2() for i in ds.getDays(): print(i) print(ds) pass
def setup_data_generators( metadata, folder_images, field_class="dx", test_size=0.1, validation_size=0.2, aux_data=False, augment=True, batch_size=50, balancing=True, seed=None) -> Tuple[dataset.Dataset, dataset.Dataset, dataset.Dataset]: if seed is None: seed = np.random.randint(0, 1e7) train_data, test_data, _, _ = model_selection.train_test_split( metadata, metadata[field_class], test_size=0.1, stratify=metadata[field_class], random_state=seed) train_data, validate_data, _, _ = model_selection.train_test_split( train_data, train_data[field_class], test_size=0.2, stratify=train_data[field_class], random_state=seed) # set up image generators get_dataset = (lambda data, aux_data, class_order=None, augment=True: dataset.Dataset(folder_images, data, target_size=(300, 225), augmentation=augment, aux_data=aux_data, batch_size=batch_size, class_order=class_order)) # sync class order with training generator train_gen = get_dataset(train_data, False) test_gen = get_dataset(test_data, False, class_order=train_gen.unique_classes, augment=False) validate_gen = get_dataset(validate_data, False, class_order=train_gen.unique_classes) # balance datasets if balancing: train_gen.balance(mode="upsampling", aggressiveness=0.7) test_gen.balance(mode="upsampling", aggressiveness=0.7) validate_gen.balance(mode="upsampling", aggressiveness=0.7) return train_gen, test_gen, validate_gen
def predict(self): selectedBurns = [] mod = self.burnList.model() for index in range(mod.rowCount()): i = mod.item(index) # print(i.checkState()) if i.checkState() == QtCore.Qt.Checked: selectedBurns.append(i.text()) print('opening the data for the burns,', selectedBurns) data = rawdata.RawData.load(burnNames=selectedBurns, dates='all') ds = dataset.Dataset(data, dataset.Dataset.vulnerablePixels) from lib import model modelFileName = self.modelLineEdit.text() print('loading model', modelFileName) mod = model.load(modelFileName) print(mod)