Exemple #1
0
    def run(self, session, primers, length, temperature, hp=None):
        batch_size = len(primers)
        # process in segments to avoid tensorflow eating all the memory
        max_segment_length = min(10000, hp.segment_length)

        print "conditioning..."
        segment_length = min(max_segment_length,
                             max(len(primer[0]) for primer in primers))
        # ensure segment_length is a multiple of chunk_size
        segment_length -= segment_length % hp.chunk_size

        state = NS(model=self.model.initial_state(batch_size))
        for segment in util.segments(primers,
                                     segment_length,
                                     overlap=hp.chunk_size):
            x, = util.examples_as_arrays(segment)
            feed_dict = {self.tensors.x: x.T}
            feed_dict.update(self.model.feed_dict(state.model))
            values = NS.FlatCall(
                ft.partial(session.run, feed_dict=feed_dict),
                self.tensors.cond.Extract("final_state.model final_xchunk"))
            state.model = values.final_state.model
            sys.stderr.write(".")
        sys.stderr.write("\n")

        cond_values = values

        # make sure length is a multiple of chunk_size
        chunky_length = length + hp.chunk_size - length % hp.chunk_size

        print "sampling..."
        length_left = chunky_length
        xhats = []
        state = NS(model=cond_values.final_state.model,
                   initial_xchunk=cond_values.final_xchunk)
        while length_left > 0:
            segment_length = min(max_segment_length, length_left)
            length_left -= segment_length

            feed_dict = {
                self.tensors.initial_xchunk: state.initial_xchunk,
                self.tensors.length: segment_length,
                self.tensors.temperature: temperature
            }
            feed_dict.update(self.model.feed_dict(state.model))
            sample_values = NS.FlatCall(
                ft.partial(session.run, feed_dict=feed_dict),
                self.tensors.sample.Extract(
                    "final_state.model xhat final_xhatchunk"))
            state.model = sample_values.final_state.model
            state.initial_xchunk = sample_values.final_xhatchunk

            xhats.append(sample_values.xhat)
            sys.stderr.write(".")
        sys.stderr.write("\n")

        xhat = np.concatenate(xhats, axis=0)
        # truncate from chunky_length to the desired sample length
        xhat = xhat[:length]
        return xhat.T
Exemple #2
0
    def run(self, session, primers, length, temperature, hp=None):
        batch_size = len(primers)
        # process in segments to avoid tensorflow eating all the memory
        max_segment_length = min(10000, hp.segment_length)

        print "conditioning..."
        segment_length = min(max_segment_length,
                             max(len(primer[0]) for primer in primers))

        state = NS(model=self.model.initial_state(batch_size))
        for segment in util.segments(primers, segment_length,
                                     overlap=LEFTOVER):
            x, = util.examples_as_arrays(segment)
            feed_dict = {self.tensors.x: x.T}
            feed_dict.update(self.model.feed_dict(state.model))
            values = tfutil.run(session,
                                tensors=self.tensors.cond.Extract(
                                    "final_state.model final_xelt"),
                                feed_dict=feed_dict)
            state.model = values.final_state.model
            sys.stderr.write(".")
        sys.stderr.write("\n")

        cond_values = values

        print "sampling..."
        length_left = length + LEFTOVER
        xhats = []
        state = NS(model=cond_values.final_state.model,
                   initial_xelt=cond_values.final_xelt)
        while length_left > 0:
            segment_length = min(max_segment_length, length_left)
            length_left -= segment_length

            feed_dict = {
                self.tensors.initial_xelt: state.initial_xelt,
                self.tensors.length: segment_length,
                self.tensors.temperature: temperature
            }
            feed_dict.update(self.model.feed_dict(state.model))
            sample_values = tfutil.run(
                session,
                tensors=self.tensors.sample.Extract(
                    "final_state.model xhat final_xhatelt"),
                feed_dict=feed_dict),
            state.model = sample_values.final_state.model
            state.initial_xelt = sample_values.final_xhatelt

            xhats.append(sample_values.xhat)
            sys.stderr.write(".")
        sys.stderr.write("\n")

        xhat = np.concatenate(xhats, axis=0)
        return xhat.T
Exemple #3
0
    def run(self, session, examples, max_step_count=None, hooks=None, hp=None):
        tensors = self.tensors.Extract(
            "loss error summaries global_step training_op learning_rate final_state.model"
        )
        state = NS(global_step=tf.train.global_step(session,
                                                    self.tensors.global_step),
                   model=self.model.initial_state(hp.batch_size))
        while True:
            for batch in util.batches(examples, hp.batch_size):
                for segment in util.segments(batch,
                                             self.segment_length,
                                             overlap=LEFTOVER):
                    if max_step_count is not None and state.global_step >= max_step_count:
                        return

                    hooks.Get("step.before", util.noop)(state)
                    x, = util.examples_as_arrays(segment)
                    feed_dict = {self.tensors.x: x.T}
                    feed_dict.update(self.model.feed_dict(state.model))
                    values = tfutil.run(session, tensors, feed_dict=feed_dict)
                    state.model = values.final_state.model
                    state.global_step = values.global_step
                    hooks.Get("step.after", util.noop)(state, values)

                    print("step #%d loss %f error %f learning rate %e" %
                          (values.global_step, values.loss, values.error,
                           values.learning_rate))

                    if np.isnan(values.loss):
                        raise ValueError("loss has become NaN")
Exemple #4
0
    def run(self,
            session,
            examples,
            max_step_count=None,
            hp=None,
            aggregates=None):
        aggregates = NS(aggregates or {})
        for key in "loss error".split():
            if key not in aggregates:
                aggregates[key] = util.MeanAggregate()

        tensors = self.tensors.Extract(*[key for key in aggregates.Keys()])
        tensors.Update(self.tensors.Extract("final_state.model"))

        state = NS(step=0, model=self.model.initial_state(hp.batch_size))

        try:
            for batch in util.batches(examples, hp.batch_size):
                for segment in util.segments(batch,
                                             hp.segment_length,
                                             overlap=hp.chunk_size):
                    if max_step_count is not None and state.step >= max_step_count:
                        raise StopIteration()

                    x, = util.examples_as_arrays(segment)
                    feed_dict = {self.tensors.x: x.T}
                    feed_dict.update(self.model.feed_dict(state.model))
                    values = NS.FlatCall(
                        ft.partial(session.run, feed_dict=feed_dict), tensors)

                    for key in aggregates.Keys():
                        aggregates[key].add(values[key])

                    sys.stderr.write(".")
                    state.model = values.final_state.model
                    state.step += 1
        except StopIteration:
            pass

        sys.stderr.write("\n")

        values = NS(
            (key, aggregate.value) for key, aggregate in aggregates.Items())

        values.summaries = [
            tf.Summary.Value(tag="%s_valid" % key, simple_value=values[key])
            for key in "loss error".split()
        ]
        print "### evaluation loss %6.5f error %6.5f" % (values.loss,
                                                         values.error)

        if np.isnan(values.loss):
            raise ValueError("loss has become NaN")

        return values
Exemple #5
0
    def run(self, session, examples, max_step_count=None, hooks=None, hp=None):
        state = NS(global_step=tf.train.global_step(session,
                                                    self.tensors.global_step),
                   model=self.model.initial_state(hp.batch_size))
        while True:
            for batch in util.batches(examples, hp.batch_size):
                for segment in util.segments(
                        batch,
                        # the last chunk is not processed, so grab
                        # one more to ensure we backpropagate
                        # through at least one full model cycle.
                        # TODO(cotim): rename segment_length to
                        # backprop_length?
                        hp.segment_length + hp.chunk_size,
                        overlap=hp.chunk_size):
                    if max_step_count is not None and state.global_step >= max_step_count:
                        return

                    hooks.Get("step.before", util.noop)(state)
                    x, = util.examples_as_arrays(segment)
                    feed_dict = {self.tensors.x: x.T}
                    feed_dict.update(self.model.feed_dict(state.model))
                    values = NS.FlatCall(
                        ft.partial(session.run, feed_dict=feed_dict),
                        self.tensors.Extract(
                            "loss error summaries global_step training_op learning_rate final_state.model"
                        ))
                    state.model = values.final_state.model
                    state.global_step = values.global_step
                    hooks.Get("step.after", util.noop)(state, values)

                    print("step #%d loss %f error %f learning rate %e" %
                          (values.global_step, values.loss, values.error,
                           values.learning_rate))

                    if np.isnan(values.loss):
                        raise ValueError("loss has become NaN")
Exemple #6
0
    def _make_sequence_graph_with_unroll(self,
                                         model_state=None,
                                         x=None,
                                         initial_xelt=None,
                                         context=None,
                                         length=None,
                                         temperature=1.0,
                                         hp=None,
                                         back_prop=False):
        """Create a sequence graph by unrolling upper layers.

    This method is similar to `_make_sequence_graph`, except that `length` must be provided. The
    resulting graph behaves in the same way as that constructed by `_make_sequence_graph`, except
    that the upper layers are outside of the while loop and so the gradient can actually be
    truncated between runs of lower layers.

    If `x` is given, the graph processes the sequence `x` one element at a time.  At step `i`, the
    model receives the `i`th element as input, and its output is used to predict the `i + 1`th
    element.

    The last element is not processed, as there would be no further element available to compare
    against and compute loss. To ensure all data is processed during TBPTT, segments `x` fed into
    successive computations of the graph should overlap by 1.

    If `x` is not given, `initial_xelt` must be given as the first input to the model.  Further
    elements are constructed from the model's predictions.

    Args:
      model_state: initial state of the model.
      x: Sequence of integer (categorical) inputs. Not needed if sampling.
          Axes [time, batch].
      initial_xelt: When sampling, x is not given; initial_xelt specifies
          the input x[0] to the first timestep.
      context: a `Tensor` denoting context, e.g. for conditioning.
          Axes [batch, features].
      length: Optional length of sequence. Inferred from `x` if possible.
      temperature: Softmax temperature to use for sampling.
      hp: Model hyperparameters.
      back_prop: Whether the graph will be backpropagated through.

    Raises:
      ValueError: if `length` is not an int.

    Returns:
      Namespace containing relevant symbolic variables.
    """
        if length is None or not isinstance(length, int):
            raise ValueError(
                "For partial unrolling, length must be known at graph construction time."
            )

        if model_state is None:
            model_state = self.state_placeholders()

        state = NS(model=model_state,
                   inner_initial_xelt=initial_xelt,
                   xhats=[],
                   losses=[],
                   errors=[])

        # i suspect ugly gradient biases may occur if gradients are truncated
        # somewhere halfway through the cycle. ensure we start at a cycle boundary.
        state.model.time = tfutil.assertion(state.model.time,
                                            tf.equal(state.model.time, 0),
                                            [state.model.time],
                                            name="outer_alignment_assertion")
        # ensure we end at a cycle boundary too.
        assert (length - LEFTOVER) % self.period == 0

        inner_period = int(np.prod(hp.periods[:self.outer_indices[0] + 1]))

        # hp.boundaries specifies truncation boundaries relative to the end of the sequence and in terms
        # of each layer's own steps; translate this to be relative to the beginning of the sequence and
        # in terms of sequence elements. note that due to the dynamic unrolling of the inner graph, the
        # inner layers necessarily get truncated at the topmost inner layer's boundary.
        boundaries = [
            length - 1 - hp.boundaries[i] * int(np.prod(hp.periods[:i + 1]))
            for i in range(len(hp.periods))
        ]
        assert all(0 <= boundary and boundary < length - LEFTOVER
                   for boundary in boundaries)
        assert boundaries == list(reversed(sorted(boundaries)))

        print "length %s periods %s boundaries %s %s inner period %s" % (
            length, hp.periods, hp.boundaries, boundaries, inner_period)

        outer_step_count = length // inner_period
        for outer_time in range(outer_step_count):
            if outer_time > 0:
                tf.get_variable_scope().reuse_variables()

            # update outer layers (wrap in seq scope to be consistent with the fully
            # symbolic version of this graph)
            with tf.variable_scope("seq"):
                # truncate gradient (only effective on outer layers)
                for i in range(len(self.cells)):
                    if outer_time * inner_period <= boundaries[i]:
                        state.model.cells[i] = list(
                            map(tf.stop_gradient, state.model.cells[i]))

                state.model.cells = Wayback.transition(
                    outer_time * inner_period,
                    state.model.cells,
                    self.cells,
                    below=None,
                    above=context,
                    subset=self.outer_indices,
                    hp=hp,
                    symbolic=False)

            # run inner layers on subsequence
            if x is None:
                inner_x = None
            else:
                start = inner_period * outer_time
                stop = inner_period * (outer_time + 1) + LEFTOVER
                inner_x = x[start:stop, :]

            # grab a copy of the outer states. they will not be updated in the inner
            # loop, so we can put back the copy after the inner loop completes.
            # this avoids the gradient truncation due to calling `while_loop` with
            # `back_prop=False`.
            outer_cell_states = NS.Copy(state.model.cells[self.outer_slice])

            def _inner_transition(input_, state, context=None):
                assert not context
                state.cells = Wayback.transition(state.time,
                                                 state.cells,
                                                 self.cells,
                                                 below=input_,
                                                 above=None,
                                                 subset=self.inner_indices,
                                                 hp=hp,
                                                 symbolic=True)
                state.time += 1
                state.time %= self.period
                h = self.get_output(state)
                return h, state

            inner_back_prop = back_prop and outer_time * inner_period >= boundaries[
                self.inner_indices[-1]]
            inner_ts = _make_sequence_graph(
                transition=_inner_transition,
                model_state=state.model,
                x=inner_x,
                initial_xelt=state.inner_initial_xelt,
                temperature=temperature,
                hp=hp,
                back_prop=inner_back_prop)

            state.model = inner_ts.final_state.model
            state.inner_initial_xelt = inner_ts.final_xelt if x is not None else inner_ts.final_xhatelt
            state.final_xhatelt = inner_ts.final_xhatelt
            if x is not None:
                state.final_x = inner_x
                state.final_xelt = inner_ts.final_xelt
                # track only losses and errors after the boundary to avoid bypassing the truncation boundary.
                if inner_back_prop:
                    state.losses.append(inner_ts.loss)
                    state.errors.append(inner_ts.error)
            state.xhats.append(inner_ts.xhat)

            # restore static outer states
            state.model.cells[self.outer_slice] = outer_cell_states

            # double check alignment to be safe
            state.model.time = tfutil.assertion(
                state.model.time,
                tf.equal(state.model.time % inner_period, 0),
                [state.model.time, tf.shape(inner_x)],
                name="inner_alignment_assertion")

        ts = NS()
        ts.xhat = tf.concat(0, state.xhats)
        ts.final_xhatelt = state.final_xhatelt
        ts.final_state = state
        if x is not None:
            ts.final_x = state.final_x
            ts.final_xelt = state.final_xelt
            # inner means are all on the same sample size, so taking their mean is valid
            ts.loss = tf.reduce_mean(state.losses)
            ts.error = tf.reduce_mean(state.errors)
        return ts