Exemple #1
0
def initialize():
    # Different losses need different method to create batches
    if FLAGS.LossType == "Contrastive_Loss":
        method = "pair"
    elif FLAGS.LossType == "NpairLoss" or FLAGS.LossType == "AngularLoss" or FLAGS.LossType == "NCA_loss":
        method = "n_pairs_mc"
    elif FLAGS.LossType == "Triplet":
        method = 'triplet'
    else:
        method = "clustering"
    print("method: " + method)

    # Create the stream of datas from dataset
    streams = data_provider.get_streams(FLAGS.batch_size,
                                        FLAGS.dataSet,
                                        method,
                                        crop_size=FLAGS.default_image_size)

    regularizer = layers.l2_regularizer(FLAGS.Regular_factor)

    if FLAGS.SaveVal:
        nn_Ops.create_path(_time)
    summary_writer = tf.summary.FileWriter(LOGDIR)

    return streams, summary_writer
Exemple #2
0
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)
sess.as_default()

# Creating Streams from the dataset
streams = data_provider.get_streams(BATCH_SIZE, DATASET, crop_size=IMAGE_SIZE)
stream_train, stream_train_eval, stream_test = streams

LEN_TRAIN = stream_train.data_stream.dataset.num_examples
MAX_ITER = int(LEN_TRAIN / BATCH_SIZE)

# check system time
_time = time.strftime('%m-%d-%H-%M', time.localtime(time.time()))
LOGDIR = './tensorboard_log/' + DATASET + '/' + _time + '/'
nn_Ops.create_path(_time)

# tfd = tfp.distributions
# prior = tfd.Independent(tfd.Normal(loc=tf.zeros(EMBEDDING_SIZE), scale=1),reinterpreted_batch_ndims=1)


def samplingGaussian(z_mean, z_log_var):
    """Reparameterization trick by sampling from an isotropic unit Gaussian.
    # Arguments
        args (tensor): mean and log of variance of Q(z|X)
    # Returns
        z (tensor): sampled latent vector
    """

    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
image_mean = np.array([123, 117, 104], dtype=np.float32)  # RGB
# To shape the array image_mean to (1, 1, 1, 3) => three channels
image_mean = image_mean[None, None, None, [2, 1, 0]]

neighbours = [1, 2, 4, 8, 16, 32]
products_neighbours = [1, 10, 1000]
############## DATASET GENERATOR #############################
streams = data_provider.get_streams(BATCH_SIZE,
                                    DATASET,
                                    "n_pairs_mc",
                                    crop_size=IMAGE_SIZE)
stream_train, stream_train_eval, stream_test = streams

LOGDIR = './tensorboard_log/' + DATASET + '/' + time.strftime(
    '%m-%d-%H-%M', time.localtime(time.time())) + '/'
nn_Ops.create_path(time.strftime('%m-%d-%H-%M', time.localtime(time.time())))

tfd = tfp.distributions
prior = tfd.Independent(tfd.Normal(loc=tf.zeros(EMBEDDING_SIZE), scale=1),
                        reinterpreted_batch_ndims=1)


def mysampling(z_mean, z_log_var):
    """Reparameterization trick by sampling from an isotropic unit Gaussian.
    # Arguments
        args (tensor): mean and log of variance of Q(z|X)
    # Returns
        z (tensor): sampled latent vector
    """

    batch = K.shape(z_mean)[0]