Exemple #1
0
def pck_metric(batch, batch_start_idx, matches, stats, args, use_cuda=True):

    source_im_size = batch['source_im_size']
    target_im_size = batch['target_im_size']
    import ipdb
    ipdb.set_trace()

    source_points = batch['source_points']
    target_points = batch['target_points']

    # warp points with estimated transformations
    target_points_norm = PointsToUnitCoords(target_points, target_im_size)

    # compute points stage 1 only
    warped_points_norm = bilinearInterpPointTnf(matches, target_points_norm)
    warped_points = PointsToPixelCoords(warped_points_norm, source_im_size)

    L_pck = batch['L_pck'].data

    current_batch_size = batch['source_im_size'].size(0)
    indices = range(batch_start_idx, batch_start_idx + current_batch_size)

    # compute PCK
    pck_batch = pck(source_points.data, warped_points.data, L_pck)
    stats['point_tnf']['pck'][indices] = pck_batch.unsqueeze(1).cpu().numpy()

    return stats
Exemple #2
0
def pck_metric(batch,
               batch_start_idx,
               matches,
               stats,
               alpha=0.1,
               use_cuda=True):

    source_im_size = batch["source_im_size"]
    target_im_size = batch["target_im_size"]

    source_points = batch[
        "source_points"]  # w.r.t. the original image coordinate #224
    target_points = batch["target_points"]  # B x 2 x N

    # warp points with estimated transformations
    target_points_norm = PointsToUnitCoords(
        target_points,
        target_im_size)  # convert from image coordinate to -1, 1
    # print('target_im_size',target_im_size)

    # compute points stage 1 only
    warped_points_norm = bilinearInterpPointTnf(matches, target_points_norm)
    warped_points = PointsToPixelCoords(warped_points_norm, source_im_size)

    L_pck = batch["L_pck"].data

    current_batch_size = batch["source_im_size"].size(0)
    indices = range(batch_start_idx, batch_start_idx + current_batch_size)

    # compute PCK
    pck_batch = pck(source_points.data, warped_points.data, L_pck, alpha=alpha)
    stats["point_tnf"]["pck"][indices] = pck_batch.unsqueeze(1).cpu().numpy()

    return stats
def pck_metric(batch,
               batch_start_idx,
               matches,
               stats,
               args,
               use_cuda=True,
               alpha=0.1):

    source_im_size = batch['source_im_size']
    target_im_size = batch['target_im_size']

    source_points = batch['source_points']
    target_points = batch['target_points']

    # warp points with estimated transformations
    target_points_norm = PointsToUnitCoords(target_points, target_im_size)

    # compute points stage 1 only
    warped_points_norm = bilinearInterpPointTnf(
        matches, target_points_norm)  # B中特征点warp到A中的coordnate位置i(-1~1)
    warped_points = PointsToPixelCoords(warped_points_norm,
                                        source_im_size)  # warp后的坐标反标准化

    L_pck = batch['L_pck'].data  # for scNet rule, the L_pck is 224

    current_batch_size = batch['source_im_size'].size(0)
    indices = range(batch_start_idx, batch_start_idx + current_batch_size)

    # compute PCK
    pck_batch = pck(source_points.data, warped_points.data, L_pck, alpha)
    stats['point_tnf']['pck'][indices] = pck_batch.unsqueeze(1).cpu().numpy()

    return stats
Exemple #4
0
def flow_metrics(batch, batch_start_idx, matches, stats, args, use_cuda=True):
    result_path = args.flow_output_dir

    pt = PointTnf(use_cuda=use_cuda)

    batch_size = batch['source_im_size'].size(0)
    for b in range(batch_size):
        h_src = int(batch['source_im_size'][b, 0].data.cpu().numpy())
        w_src = int(batch['source_im_size'][b, 1].data.cpu().numpy())
        h_tgt = int(batch['target_im_size'][b, 0].data.cpu().numpy())
        w_tgt = int(batch['target_im_size'][b, 1].data.cpu().numpy())

        grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, w_tgt),
                                     np.linspace(-1, 1, h_tgt))
        grid_X = torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3)
        grid_Y = torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3)
        grid_X = Variable(grid_X, requires_grad=False)
        grid_Y = Variable(grid_Y, requires_grad=False)
        if use_cuda:
            grid_X = grid_X.cuda()
            grid_Y = grid_Y.cuda()

        grid_X_vec = grid_X.view(1, 1, -1)
        grid_Y_vec = grid_Y.view(1, 1, -1)

        grid_XY_vec = torch.cat((grid_X_vec, grid_Y_vec), 1)

        def pointsToGrid(x, h_tgt=h_tgt, w_tgt=w_tgt):
            return x.contiguous().view(1, 2, h_tgt,
                                       w_tgt).transpose(1, 2).transpose(2, 3)

        idx = batch_start_idx + b
        source_im_size = batch['source_im_size']
        warped_points_norm = bilinearInterpPointTnf(matches, grid_XY_vec)

        # warped_points = PointsToPixelCoords(warped_points_norm,source_im_size)
        warped_points = pointsToGrid(warped_points_norm)

        # grid_aff = pointsToGrid(pt.affPointTnf(theta_aff[b, :].unsqueeze(0), grid_XY_vec))
        flow_aff = th_sampling_grid_to_np_flow(source_grid=warped_points,
                                               h_src=h_src,
                                               w_src=w_src)
        flow_aff_path = os.path.join(result_path, 'nc', batch['flow_path'][b])
        create_file_path(flow_aff_path)
        write_flo_file(flow_aff, flow_aff_path)

        idx = batch_start_idx + b
    return stats
Exemple #5
0
def pck_metric(batch,
               batch_start_idx,
               matches,
               stats,
               args,
               use_cuda=True,
               interp='bilinear'):

    source_im_size = batch['source_im_size']
    target_im_size = batch['target_im_size']

    source_points = batch['source_points']
    target_points = batch['target_points']

    # warp points with estimated transformations
    target_points_norm = PointsToUnitCoords(target_points, target_im_size)

    # compute points stage 1 only
    if interp == 'bilinear':
        warped_points_norm = bilinearInterpPointTnf(matches,
                                                    target_points_norm)
    elif interp == 'nearest':
        warped_points_norm = nearestNeighPointTnf(matches, target_points_norm)
    else:
        raise ValueError('interpolation method {} invalid'.format(interp))

    warped_points = PointsToPixelCoords(warped_points_norm, source_im_size)

    L_pck = batch['L_pck'].data

    current_batch_size = batch['source_im_size'].size(0)
    indices = range(batch_start_idx, batch_start_idx + current_batch_size)

    # compute PCK
    pck_batch = pck(source_points.data, warped_points.data, L_pck)
    stats['point_tnf']['pck'][indices] = pck_batch.unsqueeze(1).cpu().numpy()

    return stats
Exemple #6
0
        'target_image': Variable(tgt.unsqueeze(0))
    }

    if use_cuda:
        src_pts = src_pts.cuda()
        tgt_pts = tgt_pts.cuda()
        batch_tnf['source_image'] = batch_tnf['source_image'].cuda(
        )  # torch.size([1, 3, image_size, image_size])
        batch_tnf['target_image'] = batch_tnf['target_image'].cuda()

    corr4d = model(batch_tnf)  # torch.size([1, 1, 16, 16, 16, 16])

    # compute matches from output
    c2m = corr_to_matches
    xA, yA, xB, yB, sB = c2m(corr4d, do_softmax=True)
    warped_points = bilinearInterpPointTnf(
        (xA, yA, xB, yB), tgt_pts)  # B中特征点warp到A中的coordinate位置(-1~1)

    ###############################################MatchingGridCellPoints##############################################
    colA = unnormalize_axis(xA, sample['source_im_size'][1])
    rowA = unnormalize_axis(yA, sample['source_im_size'][0])
    colB = unnormalize_axis(xB, sample['target_im_size'][1])
    rowB = unnormalize_axis(yB, sample['target_im_size'][0])
    plt.imshow(imgTotal)  # tar + src
    beginScore, endScore = torch.min(sB), torch.max(sB)
    flag = endScore - 0.0001  # - 0.005 * (endScore-beginScore)
    for i in range(colA.shape[1]):
        a = sB[0][i].data > flag.data
        if int(a.cpu()):
            xa = float(colB[0][i])
            ya = float(rowB[0][i])
            xb = float(colA[0][i]) + imgDst.shape[1]