Exemple #1
0
def noof_scene_views(scene_id, eval_args):
    dataset_name = eval_args.get("DATA", "DATASET")
    cam_type = eval_args.get("DATA", "CAM_TYPE")

    p = dataset_params.get_dataset_params(dataset_name,
                                          model_type="",
                                          train_type="",
                                          test_type=cam_type,
                                          cam_type=cam_type)

    noof_imgs = len(
        os.listdir(os.path.dirname(p["test_rgb_mpath"]).format(scene_id)))
    return noof_imgs
Exemple #2
0
def get_all_scenes_for_obj(eval_args):
    workspace_path = os.environ.get("AE_WORKSPACE_PATH")
    dataset_path = u.get_dataset_path(workspace_path)

    dataset_name = eval_args.get("DATA", "DATASET")
    cam_type = eval_args.get("DATA", "CAM_TYPE")
    try:
        obj_id = eval_args.getint("DATA", "OBJ_ID")
    except:
        obj_id = eval(eval_args.get("DATA", "OBJECTS"))[0]

    cfg_string = str(dataset_name)
    current_config_hash = hashlib.md5(cfg_string).hexdigest()
    current_file_name = os.path.join(dataset_path,
                                     current_config_hash + ".npy")

    if os.path.exists(current_file_name):
        obj_scene_dict = np.load(current_file_name).item()
    else:
        p = dataset_params.get_dataset_params(dataset_name,
                                              model_type="",
                                              train_type="",
                                              test_type=cam_type,
                                              cam_type=cam_type)

        obj_scene_dict = {}
        scene_gts = []
        for scene_id in range(1, p["scene_count"] + 1):
            print(scene_id)
            scene_gts.append(
                inout.load_yaml(p["scene_gt_mpath"].format(scene_id)))

        for obj in range(1, p["obj_count"] + 1):
            eval_scenes = set()
            for scene_i, scene_gt in enumerate(scene_gts):
                for view_gt in scene_gt[0]:
                    if view_gt["obj_id"] == obj:
                        eval_scenes.add(scene_i + 1)
            obj_scene_dict[obj] = list(eval_scenes)
        np.save(current_file_name, obj_scene_dict)
    print(obj_scene_dict)

    eval_scenes = obj_scene_dict[obj_id]

    return eval_scenes
Exemple #3
0
def load_scenes(scene_id, eval_args, depth=False):

    dataset_name = eval_args.get("DATA", "DATASET")
    cam_type = eval_args.get("DATA", "CAM_TYPE")

    p = dataset_params.get_dataset_params(dataset_name,
                                          model_type="",
                                          train_type="",
                                          test_type=cam_type,
                                          cam_type=cam_type)
    cam_p = inout.load_cam_params(p["cam_params_path"])
    noof_imgs = noof_scene_views(scene_id, eval_args)
    if depth:
        imgs = np.empty((noof_imgs, ) + p["test_im_size"][::-1],
                        dtype=np.float32)
        for view_id in range(noof_imgs):
            depth_path = p["test_depth_mpath"].format(scene_id, view_id)
            try:
                imgs[
                    view_id,
                    ...] = inout.load_depth2(depth_path) * cam_p["depth_scale"]
            except:
                print(depth_path, " not found")

    else:
        print((noof_imgs, ) + p["test_im_size"][::-1] + (3, ))
        imgs = np.empty((noof_imgs, ) + p["test_im_size"][::-1] + (3, ),
                        dtype=np.uint8)
        print(noof_imgs)
        for view_id in range(noof_imgs):
            img_path = p["test_rgb_mpath"].format(scene_id, view_id)
            try:
                imgs[view_id, ...] = cv2.imread(img_path)
            except:
                print(img_path, " not found")
    return imgs
Exemple #4
0
def get_gt_scene_crops(scene_id, eval_args, train_args):

    dataset_name = eval_args.get("DATA", "DATASET")
    cam_type = eval_args.get("DATA", "CAM_TYPE")
    icp = eval_args.getboolean("EVALUATION", "ICP")

    delta = eval_args.get("METRIC", "VSD_DELTA")

    workspace_path = os.environ.get("AE_WORKSPACE_PATH")
    dataset_path = u.get_dataset_path(workspace_path)

    H = train_args.getint("Dataset", "H")

    cfg_string = str([scene_id] + eval_args.items("DATA") +
                     eval_args.items("BBOXES") + [H])
    current_config_hash = hashlib.md5(cfg_string).hexdigest()

    current_file_name = os.path.join(dataset_path,
                                     current_config_hash + ".npz")

    if os.path.exists(current_file_name):
        data = np.load(current_file_name)
        test_img_crops = data["test_img_crops"].item()
        test_img_depth_crops = data["test_img_depth_crops"].item()
        bb_scores = data["bb_scores"].item()
        bb_vis = data["visib_gt"].item()
        bbs = data["bbs"].item()
    if not osp.exists(current_file_name) or len(test_img_crops) == 0 or len(
            test_img_depth_crops) == 0:
        test_imgs = load_scenes(scene_id, eval_args)
        test_imgs_depth = load_scenes(scene_id, eval_args,
                                      depth=True) if icp else None

        data_params = dataset_params.get_dataset_params(dataset_name,
                                                        model_type="",
                                                        train_type="",
                                                        test_type=cam_type,
                                                        cam_type=cam_type)

        # only available for primesense, sixdtoolkit can generate
        visib_gt = inout.load_yaml(data_params["scene_gt_stats_mpath"].format(
            scene_id, delta))

        bb_gt = inout.load_gt(data_params["scene_gt_mpath"].format(scene_id))

        test_img_crops, test_img_depth_crops, bbs, bb_scores, bb_vis = generate_scene_crops(
            test_imgs,
            test_imgs_depth,
            bb_gt,
            eval_args,
            train_args,
            visib_gt=visib_gt)

        np.savez(
            current_file_name,
            test_img_crops=test_img_crops,
            test_img_depth_crops=test_img_depth_crops,
            bbs=bbs,
            bb_scores=bb_scores,
            visib_gt=bb_vis,
        )

        current_cfg_file_name = os.path.join(dataset_path,
                                             current_config_hash + ".cfg")
        with open(current_cfg_file_name, "w") as f:
            f.write(cfg_string)
        print("created new ground truth crops!")
    else:
        print("loaded previously generated ground truth crops!")
        print(len(test_img_crops), len(test_img_depth_crops))

    return (test_img_crops, test_img_depth_crops, bbs, bb_scores, bb_vis)
Exemple #5
0
def plot_vsd_err_hist(eval_dir,
                      scene_ids,
                      obj_id,
                      dataset_name="linemod",
                      top_n=1,
                      delta=15,
                      tau=20,
                      cost="step",
                      cam_type="primesense"):
    # top_n_eval = eval_args.getint('EVALUATION', 'TOP_N_EVAL')
    # top_n = eval_args.getint('METRIC', 'TOP_N')
    # delta = eval_args.getint('METRIC', 'VSD_DELTA')
    # tau = eval_args.getint('METRIC', 'VSD_TAU')
    # cost = eval_args.get('METRIC', 'VSD_COST')
    # cam_type = eval_args.get('DATA', 'cam_type')
    # dataset_name = eval_args.get('DATA', 'dataset')
    # obj_id = eval_args.getint('DATA', 'obj_id')
    # if top_n_eval < 1:
    #     return

    data_params = dataset_params.get_dataset_params(dataset_name,
                                                    model_type="",
                                                    train_type="",
                                                    test_type=cam_type,
                                                    cam_type=cam_type)

    vsd_errs = []
    for scene_id in scene_ids:
        if dataset_name in ["linemod", "hinterstoisser"]:
            # NOTE: linemod scene_id == obj_id
            if obj_id != scene_id:
                continue

        error_file_path = osp.join(
            eval_dir,
            "error=vsd_ntop=%s_delta=%s_tau=%s_cost=%s" %
            (top_n, delta, tau, cost),
            "errors_{:02d}.yml".format(scene_id),
        )

        if not osp.exists(error_file_path):
            print("WARNING: " + error_file_path + " not found")
            continue
        gts = inout.load_gt(data_params["scene_gt_mpath"].format(scene_id))
        visib_gts = inout.load_yaml(data_params["scene_gt_stats_mpath"].format(
            scene_id, 15))  # delta=15
        vsd_dict = inout.load_yaml(error_file_path)
        for view, vsd_e in enumerate(vsd_dict):
            vsds = vsd_dict[view * top_n:(view + 1) * top_n]
            for gt, visib_gt in zip(gts[view], visib_gts[view]):
                if gt["obj_id"] == obj_id:
                    if visib_gt["visib_fract"] > 0.1:
                        for vsd_e in vsds:
                            vsd_errs += [list(vsd_e["errors"].values())[0]]

    if len(vsd_errs) == 0:
        return
    vsd_errs = np.array(vsd_errs)
    logger.info("vsd errs: {}".format(len(vsd_errs)))

    fig = plt.figure()  # noqa
    ax = plt.gca()
    ax.set_xlim((0.0, 1.0))
    plt.grid()
    plt.xlabel("vsd err")
    plt.ylabel("recall")
    plt.title("obj: {}, VSD Error vs Recall".format(obj_id))
    legend = []

    for n in np.unique(np.array([top_n, 1])):

        total_views = int(len(vsd_errs) / top_n)
        min_vsd_errs = np.empty((total_views, ))

        for view in range(total_views):
            top_n_errors = vsd_errs[view * top_n:(view + 1) * top_n]
            if n == 1:
                top_n_errors = top_n_errors[np.newaxis, 0]
            min_vsd_errs[view] = np.min(top_n_errors)

        min_vsd_errs_sorted = np.sort(min_vsd_errs)
        recall = np.float32(np.arange(total_views) + 1.0) / total_views

        # fill curve
        min_vsd_errs_sorted = np.hstack((min_vsd_errs_sorted, np.array([1.0])))
        recall = np.hstack((recall, np.array([1.0])))

        AUC_vsd = np.trapz(recall, min_vsd_errs_sorted)
        plt.plot(min_vsd_errs_sorted, recall)

        legend += ["top {0} vsd err, AUC = {1:.4f}".format(n, AUC_vsd)]
        logger.info("obj:{} top {} vsd err, AUC = {:.4f}".format(
            obj_id, n, AUC_vsd))
    plt.legend(legend)
    out_file = osp.join(eval_dir, "latex",
                        "vsd_err_hist_obj_{:02d}.tex".format(obj_id))
    mkdir_p(osp.dirname(out_file))
    logger.info(osp.basename(out_file))
    tikz_save(out_file,
              figurewidth="0.45\\textheight",
              figureheight="0.45\\textheight",
              show_info=False)
Exemple #6
0
def plot_R_err_hist(eval_args, eval_dir, scene_ids):

    top_n_eval = eval_args.getint("EVALUATION", "TOP_N_EVAL")
    top_n = eval_args.getint("METRIC", "TOP_N")
    cam_type = eval_args.get("DATA", "cam_type")
    dataset_name = eval_args.get("DATA", "dataset")
    obj_id = eval_args.getint("DATA", "obj_id")

    if top_n_eval < 1:
        return

    data_params = dataset_params.get_dataset_params(dataset_name,
                                                    model_type="",
                                                    train_type="",
                                                    test_type=cam_type,
                                                    cam_type=cam_type)

    angle_errs = []
    for scene_id in scene_ids:
        error_file_path = os.path.join(eval_dir, "error=re_ntop=%s" % top_n,
                                       "errors_{:02d}.yml".format(scene_id))
        if not os.path.exists(error_file_path):
            print("WARNING: " + error_file_path + " not found")
            continue
        # angle_errs_dict = inout.load_yaml(error_file_path)
        # angle_errs += [list(angle_e['errors'].values())[0] for angle_e in angle_errs_dict]

        gts = inout.load_gt(data_params["scene_gt_mpath"].format(scene_id))
        visib_gts = inout.load_yaml(data_params["scene_gt_stats_mpath"].format(
            scene_id, 15))
        re_dict = inout.load_yaml(error_file_path)

        for view in range(len(gts)):
            res = re_dict[view * top_n:(view + 1) * top_n]
            for gt, visib_gt in zip(gts[view], visib_gts[view]):
                if gt["obj_id"] == obj_id:
                    if visib_gt["visib_fract"] > 0.1:
                        for re_e in res:
                            angle_errs += [list(re_e["errors"].values())[0]]

    if len(angle_errs) == 0:
        return

    angle_errs = np.array(angle_errs)

    fig = plt.figure()  # noqa
    plt.grid()
    plt.xlabel("angle err [deg]")
    plt.ylabel("recall")
    plt.title("Angle Error vs Recall")
    legend = []

    for n in np.unique(np.array([top_n, 1])):

        total_views = len(angle_errs) / top_n
        min_angle_errs = np.empty((total_views, ))
        min_angle_errs_rect = np.empty((total_views, ))

        for view in range(total_views):
            top_n_errors = angle_errs[view * top_n:(view + 1) * top_n]
            if n == 1:
                top_n_errors = top_n_errors[np.newaxis, 0]
            min_angle_errs[view] = np.min(top_n_errors)
            min_angle_errs_rect[view] = np.min(
                np.hstack((top_n_errors, 180 - top_n_errors)))

        min_angle_errs_sorted = np.sort(min_angle_errs)
        min_angle_errs_rect_sorted = np.sort(min_angle_errs_rect)
        recall = (np.arange(total_views) + 1.0) / total_views

        # fill curve
        min_angle_errs_sorted = np.hstack(
            (min_angle_errs_sorted, np.array([180.0])))
        min_angle_errs_rect_sorted = np.hstack(
            (min_angle_errs_rect_sorted, np.array([90.0])))
        recall = np.hstack((recall, np.array([1.0])))

        AUC_angle = np.trapz(recall, min_angle_errs_sorted / 180.0)
        AUC_angle_rect = np.trapz(recall, min_angle_errs_rect_sorted / 90.0)

        plt.plot(min_angle_errs_sorted, recall)
        plt.plot(min_angle_errs_rect_sorted, recall)

        legend += [
            "top {0} angle err, AUC = {1:.4f}".format(n, AUC_angle),
            "top {0} rectified angle err, AUC = {1:.4f}".format(
                n, AUC_angle_rect),
        ]
    plt.legend(legend)
    tikz_save(
        osp.join(eval_dir, "latex", "R_err_hist.tex"),
        figurewidth="0.45\\textheight",
        figureheight="0.45\\textheight",
        show_info=False,
    )
Exemple #7
0
def plot_scene_with_3DBoxes(scene_res_dirs,
                            dataset_name="tless",
                            scene_id=1,
                            save=False):

    # sixd_img_path = '/home_local/sund_ma/data/linemod_dataset/test'
    # model_path = '/home_local/sund_ma/data/linemod_dataset/models'

    # inout.save_results_sixd17(res_path, preds, run_time=run_time)

    # obj_gts = []
    # obj_infos = []
    # for object_id in range(1,noofobjects+1):
    #     obj_gts.append(inout.load_gt(os.path.join(sixd_img_path,'{:02d}'.format(object_id),'gt.yml')))
    #     obj_infos.append(inout.load_info(os.path.join(sixd_img_path,'{:02d}'.format(object_id),'info.yml')))
    #     print( len(obj_gts))

    # dataset_name = eval_args.get('DATA','DATASET')
    # cam_type = eval_args.get('DATA','CAM_TYPE')

    # data_params = dataset_params.get_dataset_params(dataset_name, model_type='', train_type='', test_type='primesense', cam_type='primesense')
    data_params = dataset_params.get_dataset_params(dataset_name,
                                                    model_type="",
                                                    train_type="")

    models_cad_files = sorted(
        glob.glob(
            os.path.join(os.path.dirname(data_params["model_mpath"]),
                         "*.ply")))
    W, H = data_params["test_im_size"]

    from lib.meshrenderer import box3d_renderer

    renderer_line = box3d_renderer.Renderer(models_cad_files, 1, W, H)

    scene_result_dirs = sorted(glob.glob(scene_res_dirs))
    print(data_params["test_rgb_mpath"])
    print(data_params["scene_gt_mpath"])

    # for scene_id in range(1,21):
    # sixd_img_path = data_params['test_rgb_mpath'].format(scene_id)
    scene_gts = inout.load_gt(data_params["scene_gt_mpath"].format(scene_id))
    scene_infos = inout.load_info(
        data_params["scene_info_mpath"].format(scene_id))

    scene_dirs = [
        d for d in scene_result_dirs if "%02d" % scene_id == d.split("/")[-1]
    ]
    print(scene_dirs)

    for view in range(len(scene_infos)):
        sixd_img_path = data_params["test_rgb_mpath"].format(scene_id, view)
        img = cv2.imread(sixd_img_path)
        box_img = img.copy()
        # cv2.imshow('',img)
        # cv2.waitKey(0)
        K = scene_infos[view]["cam_K"]

        for bb in scene_gts[view]:

            xmin = int(bb["obj_bb"][0])
            ymin = int(bb["obj_bb"][1])
            xmax = int(bb["obj_bb"][0] + bb["obj_bb"][2])
            ymax = int(bb["obj_bb"][1] + bb["obj_bb"][3])

            cv2.rectangle(box_img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
            cv2.putText(box_img, "%s" % (bb["obj_id"]), (xmin, ymax + 20),
                        cv2.FONT_ITALIC, 0.5, (0, 255, 0), 2)
        # for gt in scene_gts[view]:
        # if gt['obj_id'] not in [1,8,9]:
        #     lines_gt = renderer_line.render(gt['obj_id']-1,K,gt['cam_R_m2c'],gt['cam_t_m2c'],10,5000)
        #     lines_gt_mask = (np.sum(lines_gt,axis=2) < 20)[:,:,None]
        #     print( lines_gt.shape)
        #     lines_gt = lines_gt[:,:,[1,0,2]]
        #     img = lines_gt_mask*img + lines_gt

        for scene_dir in scene_dirs:
            try:
                res_path = glob.glob(
                    os.path.join(scene_dir, "%04d_*.yml" % view))
                print(res_path)
                res_path = res_path[0]
                # print( 'here', res_path)
                obj_id = int(res_path.split("_")[-1].split(".")[0])
                results = inout.load_results_sixd17(res_path)
                print(results)
                e = results["ests"][0]
                R_est = e["R"]
                t_est = e["t"]
                K = scene_infos[view]["cam_K"]
                lines = renderer_line.render(obj_id - 1, K, R_est, t_est, 10,
                                             5000)
                lines_mask = (np.sum(lines, axis=2) < 20)[:, :, None]
                # img[lines>0] = lines[lines>0]
                if obj_id % 7 == 1:
                    lines[:, :, 0] = lines[:, :, 1]
                elif obj_id % 7 == 2:
                    lines[:, :, 2] = lines[:, :, 1]
                elif obj_id % 7 == 3:
                    lines[:, :, 0] = lines[:, :, 1]
                    lines[:, :, 1] = lines[:, :, 2]

                img = lines_mask * img + lines
            except:
                print("undeteceted obj: ", scene_dir)
        cv2.imshow("", img)
        if cv2.waitKey(1) == 32:
            cv2.waitKey(0)
        if save:
            if "icp" in scene_res_dirs:
                if not os.path.exists("%02d" % scene_id):
                    os.makedirs("%02d" % scene_id)
                cv2.imwrite(os.path.join("%02d" % scene_id, "%04d.png" % view),
                            img)
            else:

                if not os.path.exists("%02d_rgb" % scene_id):
                    os.makedirs("%02d_rgb" % scene_id)
                cv2.imwrite(
                    os.path.join("%02d_rgb" % scene_id, "%04d.png" % view),
                    img)
Exemple #8
0
def match_and_eval_performance_scores(
    eval_dir,
    error_types=["vsd", "re", "te"],
    error_thresh={
        "vsd": 0.3,
        "cou": 0.5,
        "te": 5.0,
        "re": 5.0
    },  # cm  # deg
    error_thresh_fact={
        "add": 0.1,
        "adi": 0.1
    },
    dataset="linemod",
    cam_type="primesense",
    n_top=1,
    vsd_delta=15,
    vsd_tau=20,
    vsd_cost="step",
    method="",
    image_subset="bb8",
):
    """
    error_thresh_fact: Factor k; threshold of correctness = k * d, where d is the object diameter
    """
    # Paths to pose errors (calculated using eval_calc_errors.py)
    # ---------------------------------------------------------------------------
    # error_bpath = '/path/to/eval/'
    # error_paths = [
    #     pjoin(error_bpath, 'hodan-iros15_hinterstoisser'),
    #     # pjoin(error_bpath, 'hodan-iros15_tless_primesense'),
    # ]
    assert image_subset in ["sixd_v1", "bb8", "None"]
    test_type = cam_type

    idx_th = 0
    idx_thf = 0

    for error_type in error_types:
        # Error signature
        error_sign = "error:" + error_type + "_ntop:" + str(n_top)
        if error_type == "vsd":
            error_sign += "_delta:{}_tau:{}_cost:{}".format(
                vsd_delta, vsd_tau, vsd_cost)

        error_path = osp.join(eval_dir, error_sign)
        # error_dir = 'error=vsd_ntop=1_delta=15_tau=20_cost=step'
        # Other paths
        # ---------------------------------------------------------------------------
        # Mask of path to the input file with calculated errors
        errors_mpath = pjoin("{error_path}", "errors_{scene_id:02d}.yml")

        # Mask of path to the output file with established matches and calculated scores
        matches_mpath = pjoin("{error_path}", "matches_{eval_sign}.yml")
        scores_mpath = pjoin("{error_path}", "scores_{eval_sign}.yml")

        # Parameters
        # ---------------------------------------------------------------------------
        # use_image_subset = True  # Whether to use the specified subset of images
        require_all_errors = False  # Whether to break if some errors are missing
        visib_gt_min = 0.1  # Minimum visible surface fraction of valid GT pose
        visib_delta = 15  # [mm]

        # # Threshold of correctness
        # error_thresh = {
        #     'vsd': 0.3,
        #     'cou': 0.5,
        #     'te': 5.0, # [cm]
        #     're': 5.0 # [deg]
        # }

        # # Factor k; threshold of correctness = k * d, where d is the object diameter
        # error_thresh_fact = {
        #     'add': 0.1,
        #     'adi': 0.1
        # }

        # Evaluation
        # ---------------------------------------------------------------------------

        # Evaluation signature
        if error_type in ["add", "adi"]:
            if type(error_thresh_fact[error_type]) is list:
                cur_thres_f = error_thresh_fact[error_type][idx_thf]
                idx_thf += 1
            else:
                cur_thres_f = error_thresh_fact[error_type]
            eval_sign = "thf:" + str(cur_thres_f)
        else:
            if type(error_thresh[error_type]) is list:
                cur_thres = error_thresh[error_type][idx_th]
                idx_th += 1
            else:
                cur_thres = error_thresh[error_type]
            eval_sign = "th:" + str(cur_thres)
        eval_sign += "_min-visib:" + str(visib_gt_min)

        logger.info("--- Processing: {}, {}, {}".format(
            method, dataset, error_type))

        # Load dataset parameters
        dp = get_dataset_params(dataset, test_type=test_type)
        obj_ids = range(1, dp["obj_count"] + 1)
        scene_ids = range(1, dp["scene_count"] + 1)

        # Subset of images to be considered
        if image_subset == "sixd_v1":
            logger.info("use image subset: {}".format(dp["test_set_fpath"]))
            im_ids_sets = inout.load_yaml(dp["test_set_fpath"])
            total_imgs = sum([len(v) for k, v in im_ids_sets.items()])
            logger.info(
                "total number of imgs in test set: {}".format(total_imgs))
        elif image_subset == "bb8":
            logger.info("use image subset: {}".format(
                dp["test_set_bb8_fpath"]))
            im_ids_sets = inout.load_yaml(dp["test_set_bb8_fpath"])
            total_imgs = sum([len(v) for k, v in im_ids_sets.items()])
            logger.info("total number of imgs in test set: {}".format(
                total_imgs))  # 13425
        else:
            im_ids_sets = None

        # Set threshold of correctness (might be different for each object)
        error_threshs = {}
        if error_type in ["add", "adi"]:
            # Relative to object diameter
            models_info = inout.load_yaml(dp["models_info_path"])
            for obj_id in obj_ids:
                obj_diameter = models_info[obj_id]["diameter"]
                error_threshs[obj_id] = cur_thres_f * obj_diameter
        else:
            # The same threshold for all objects
            for obj_id in obj_ids:
                error_threshs[obj_id] = cur_thres

        # Go through the test scenes and match estimated poses to GT poses
        # -----------------------------------------------------------------------
        matches = []  # Stores info about the matching estimate for each GT
        for scene_id in scene_ids:
            # Load GT poses
            gts = inout.load_gt(dp["scene_gt_mpath"].format(scene_id))

            # Load statistics (e.g. visibility fraction) of the GT poses
            gt_stats_path = dp["scene_gt_stats_mpath"].format(
                scene_id, visib_delta)
            gt_stats = inout.load_yaml(gt_stats_path)

            # Keep the GT poses and their stats only for the selected images
            if im_ids_sets is not None:
                if scene_id not in im_ids_sets.keys():
                    continue
                im_ids = im_ids_sets[scene_id]
                gts = {im_id: gts[im_id] for im_id in im_ids}
                gt_stats = {im_id: gt_stats[im_id] for im_id in im_ids}

            # Load pre-calculated errors of the pose estimates
            scene_errs_path = errors_mpath.format(error_path=error_path,
                                                  scene_id=scene_id)

            if osp.isfile(scene_errs_path):
                logger.info("loading error file: {}".format(scene_errs_path))
                errs = inout.load_errors(scene_errs_path)
                matches += match_poses(gts, gt_stats, errs, scene_id,
                                       visib_gt_min, error_threshs, n_top)
            elif require_all_errors:
                raise IOError(
                    "{} is missing, but errors for all scenes are required"
                    " (require_all_results = True).".format(scene_errs_path))

        # Calculate the performance scores
        # -----------------------------------------------------------------------
        # Split the dataset of Hinterstoisser to the original LINEMOD dataset
        # and the Occlusion dataset by TUD (i.e. the extended GT for scene #2)
        if dataset in ["hinterstoisser", "linemod", "linemod_occ"]:
            if dataset in ["linemod", "hinterstoisser"]:
                logger.info("-- LINEMOD dataset")
                eval_sign_lm = "linemod_" + eval_sign
                matches_lm = [
                    m for m in matches if m["scene_id"] == m["obj_id"]
                ]
                scores_lm = calc_scores(scene_ids,
                                        obj_ids,
                                        matches_lm,
                                        n_top,
                                        dataset=dataset)

                # Save scores
                scores_lm_path = scores_mpath.format(error_path=error_path,
                                                     eval_sign=eval_sign_lm)
                inout.save_yaml(scores_lm_path, scores_lm)

                # Save matches
                matches_path = matches_mpath.format(error_path=error_path,
                                                    eval_sign=eval_sign_lm)
                inout.save_yaml(matches_path, matches_lm)
            elif dataset == "linemod_occ":
                logger.info("-- Occlusion dataset")
                eval_sign_occ = "occlusion_" + eval_sign
                matches_occ = [m for m in matches if m["scene_id"] == 2]
                scene_ids_occ = [2]
                # obj_ids_occ = [1, 2, 5, 6, 8, 9, 10, 11, 12]
                obj_ids_occ = [1, 5, 6, 8, 9, 10, 11, 12]
                scores_occ = calc_scores(scene_ids_occ,
                                         obj_ids_occ,
                                         matches_occ,
                                         n_top,
                                         dataset=dataset)
                # Save scores
                scores_occ_path = scores_mpath.format(error_path=error_path,
                                                      eval_sign=eval_sign_occ)
                inout.save_yaml(scores_occ_path, scores_occ)

                # Save matches
                matches_path = matches_mpath.format(error_path=error_path,
                                                    eval_sign=eval_sign_occ)
                inout.save_yaml(matches_path, matches_occ)
        else:
            scores = calc_scores(scene_ids, obj_ids, matches, n_top)

            # Save scores
            scores_path = scores_mpath.format(error_path=error_path,
                                              eval_sign=eval_sign)
            inout.save_yaml(scores_path, scores)

            # Save matches
            matches_path = matches_mpath.format(error_path=error_path,
                                                eval_sign=eval_sign)
            inout.save_yaml(matches_path, matches)

    logger.info("Done.")