def forward(self, images, targets=None):
        """
        Arguments:
            images (list[Tensor] or ImageList): images to be processed
            targets (list[BoxList]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")
        images = to_image_list(images)
        features = self.backbone(images.tensors)
        proposals, proposal_losses = self.rpn(images, features, targets)
        if self.roi_heads:
            x, result, detector_losses = self.roi_heads(
                features, proposals, targets)
        else:
            # RPN-only models don't have roi_heads
            x = features
            result = proposals
            detector_losses = {}

        if self.training:
            losses = {}
            losses.update(detector_losses)
            losses.update(proposal_losses)
            return losses

        return result
Exemple #2
0
 def __call__(self, batch):
     transposed_batch = list(zip(*batch))
     images = to_image_list(transposed_batch[0], self.size_divisible)
     if self.produce:
         img_idx = transposed_batch[1]
         img_ids = transposed_batch[2]
         return images, img_idx, img_ids
     else:
         targets = transposed_batch[1]
         img_ids = transposed_batch[2]
         img_name = transposed_batch[3]
         return images, targets, img_ids, img_name
Exemple #3
0
def im_detect_bbox(model, images, target_scale, target_max_size, device):
    """
    Performs bbox detection on the original image.
    """
    transform = TT.Compose([
        T.Resize(target_scale, target_max_size),
        TT.ToTensor(),
        T.Normalize(mean=cfg.INPUT.PIXEL_MEAN,
                    std=cfg.INPUT.PIXEL_STD,
                    to_bgr255=cfg.INPUT.TO_BGR255)
    ])
    images = [transform(image) for image in images]
    images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY)
    return model(images.to(device))
Exemple #4
0
def im_detect_bbox_hflip(model, images, target_scale, target_max_size, device):
    """
    Performs bbox detection on the horizontally flipped image.
    Function signature is the same as for im_detect_bbox.
    """
    transform = TT.Compose([
        T.Resize(target_scale, target_max_size),
        TT.RandomHorizontalFlip(1.0),
        TT.ToTensor(),
        T.Normalize(mean=cfg.INPUT.PIXEL_MEAN,
                    std=cfg.INPUT.PIXEL_STD,
                    to_bgr255=cfg.INPUT.TO_BGR255)
    ])
    images = [transform(image) for image in images]
    images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY)
    boxlists = model(images.to(device))

    # Invert the detections computed on the flipped image
    boxlists_inv = [boxlist.transpose(0) for boxlist in boxlists]
    return boxlists_inv
 def __call__(self, batch):
     transposed_batch = list(zip(*batch))
     images = to_image_list(transposed_batch[0], self.size_divisible)
     targets = transposed_batch[1]
     img_ids = transposed_batch[2]
     return images, targets, img_ids