Exemple #1
0
def main():
    para = params_setup()
    logging_config_setup(para)

    logging.info('Creating graph')
    graph, model, data_generator = create_graph(para)

    with tf.Session(config=config_setup(), graph=graph) as sess:
        sess.run(tf.global_variables_initializer())
        logging.info('Loading weights')
        load_weights(para, sess, model)
        print_num_of_trainable_parameters()

        try:
            if para.mode == 'train':
                logging.info('Started training')
                train(para, sess, model, data_generator)
                if para.save_final_model_path != '':
                    save_weights(sess, model, para.save_final_model_path)
            elif para.mode == 'validation':
                logging.info('Started validation')
                test(para, sess, model, data_generator)
            elif para.mode == 'test':
                logging.info('Started testing')
                test(para, sess, model, data_generator)
            elif para.mode == 'predict':
                logging.info('Predicting')
                predict(para, sess, model, data_generator,
                        './data/solar-energy3/solar_predict.txt', para.samples)

        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
            print('Stop')
def train(para, sess, model, train_data_generator):
    valid_para, valid_graph, valid_model, valid_data_generator = \
        create_valid_graph(para)

    with tf.Session(config=config_setup(), graph=valid_graph) as valid_sess:
        valid_sess.run(tf.global_variables_initializer())

        # validation
        load_weights(valid_para, valid_sess, valid_model)
        valid_sess.run(valid_data_generator.iterator.initializer)
        valid_loss = 0.0
        valid_rse = 0.0
        valid_rae = 0.0
        count = 0
        n_samples = 0
        all_outputs, all_labels, all_inputs = [], [], []
        while True:
            try:
                [loss, outputs, labels, inputs] = valid_sess.run(fetches=[
                    valid_model.loss,
                    valid_model.all_rnn_outputs,
                    valid_model.labels,
                    valid_model.rnn_inputs
                ])
                if para.mts:
                    valid_rse += np.sum(
                        ((outputs - labels) * valid_data_generator.scale)
                        **2)
                    valid_rae += np.sum(
                        (abs(outputs - labels) * valid_data_generator.scale))
                    all_outputs.append(outputs)
                    all_labels.append(labels)
                    all_inputs.append(inputs)
                    n_samples += np.prod(outputs.shape)
                valid_loss += loss
                count += 1
            except tf.errors.OutOfRangeError:
                break
        if para.mts:
            all_outputs = np.concatenate(all_outputs)
            all_labels = np.concatenate(all_labels)
            all_inputs = np.concatenate(all_inputs)

    return all_inputs, all_labels, all_outputs
Exemple #3
0
def main():
    para = params_setup()
    logging_config_setup(para)

    print("Creating graph...")
    graph, model, data_generator = create_graph(para)
    print("Done creating graph.")

    with tf.Session(config=config_setup(), graph=graph) as sess:
        sess.run(tf.global_variables_initializer())
        print("Loading weights...")
        load_weights(para, sess, model)
        print_num_of_trainable_parameters()

        # PRINT NAMES OF TENSORS THAT ARE ALPHAS
        # example name: "model/rnn/cond/rnn/multi_rnn_cell/cell_0/cell_0/temporal_pattern_attention_cell_wrapper/attention/Sigmoid:0"
        # for item in [n.name for n in tf.get_default_graph().as_graph_def().node
        #              if (n.name.find("temporal_pattern_attention_cell_wrapper/attention")!=-1 and
        #                  n.name.find("Sigmoid")!=-1)]:
        #     print(item)

        # Print names of ops
        # for op in tf.get_default_graph().get_operations():
        #     if(op.name.find("ben_multiply")!=-1):
        #         print(str(op.name))

        # PRINT REG KERNEL AND BIAS
        # reg_weights = [v for v in tf.global_variables() if v.name == "model/dense_2/kernel:0"][0]
        # reg_bias = [v for v in tf.global_variables() if v.name == "model/dense_2/bias:0"][0]
        # print("Reg Weights:", sess.run(reg_weights))
        # print("Reg Bias:", sess.run(reg_bias) * data_generator.scale[0])

        try:
            if para.mode == 'train':
                train(para, sess, model, data_generator)
            elif para.mode == 'test':
                print("Evaluating model...")
                test(para, sess, model, data_generator)

        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
            print('Stop')
Exemple #4
0
def main():
    para = params_setup()
    logging_config_setup(para)

    graph, model, data_generator = create_graph(para)

    with tf.Session(config=config_setup(), graph=graph) as sess:
        sess.run(tf.global_variables_initializer())
        load_weights(para, sess, model)
        print_num_of_trainable_parameters()

        try:
            if para.mode == 'train':
                train(para, sess, model, data_generator)
            elif para.mode == 'test':
                test(para, sess, model, data_generator)

        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
            print('Stop')
Exemple #5
0
def main():
    para = sess_params_setup()
    logging_config_setup(para)

    graph, model, data_generator = create_graph(para)

    with tf.Session(config=config_setup(), graph=graph) as sess:
        sess.run(tf.global_variables_initializer())
        load_weights(para, sess, model)
        print_num_of_trainable_parameters()

        try:

            all_inputs, all_labels, all_outputs = train(
                para, sess, model, data_generator)

            return all_inputs, all_labels, all_outputs, model

            # all_inputs = all_inputs.permute(0,2,1)
            #
            # modelSize = 500
            # sampleSize = 500
            #
            # model_input = [tf.convert_to_tensor(x, dtype=tf.float32) for x in all_inputs[:modelSize]]
            # model_output = tf.convert_to_tensor(all_outputs[:modelSize], dtype=tf.float32)
            #
            # data = [x for x in all_inputs[:sampleSize]]
            # X = [x for x in all_inputs[:modelSize]]
            #
            # model2 = (model_input, model_output)
            # explainer = shap.DeepExplainer(model2, data, sess)
            # shap_values = explainer.shap_values(X)
            #
            # return shap_values

        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
            print('Stop')
def main():
    para = params_setup()
    logging_config_setup(para)

    graph, model, data_generator = create_graph(para)

    with tf.Session(config=config_setup(), graph=graph) as sess:
        sess.run(tf.global_variables_initializer())
        load_weights(para, sess, model)
        print_num_of_trainable_parameters()

        try:
            # EXTRACT WEIGHTS HERE
            for variable in tf.global_variables(): # tf.trainable_variables():
                print(variable)

            # VIEW FETCHABLE OPS
            graph = tf.get_default_graph()
            print([op for op in parent_ops if graph.is_fetchable(op)])

        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
            print('Weights extracted. Stop.')
Exemple #7
0
def main():
    para = params_setup()
    logging_config_setup(para)

    graph, model, data_generator = create_graph(para)

    with tf.Session(config=config_setup(), graph=graph) as sess:
        sess.run(tf.global_variables_initializer())
        load_weights(para, sess, model)
        print_num_of_trainable_parameters()

        try:
            if para.mode == 'train':
                train(para, sess, model, data_generator)
            elif para.mode == 'test':
                obs, predicted = test(para, sess, model, data_generator)
                obs = obs * data_generator.scale + data_generator.min_value
                predicted = predicted * data_generator.scale + data_generator.min_value
                print("MSE: ", mean_squared_error(obs[:, 0], predicted[:, 0]))
                idx = pd.DatetimeIndex(start='2016-10-16',
                                       end='2018-11-04',
                                       freq='W')
                obs_df = pd.DataFrame(data=obs[:, 0],
                                      columns=['Observed'],
                                      index=idx)
                pred_df = pd.DataFrame(data=predicted[:, 0],
                                       columns=['Predicted'],
                                       index=idx)
                df = pd.concat([obs_df, pred_df], axis=1)
                df.plot()
                plt.show()

        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
            print('Stop')
Exemple #8
0
def train(para, sess, model, train_data_generator):
    valid_para, valid_graph, valid_model, valid_data_generator = \
        create_valid_graph(para)

    with tf.Session(config=config_setup(), graph=valid_graph) as valid_sess:
        valid_sess.run(tf.global_variables_initializer())

        for epoch in range(1, para.num_epochs + 1):
            logging.info("Epoch: %d" % epoch)
            sess.run(train_data_generator.iterator.initializer)

            start_time = time.time()
            train_loss = 0.0
            count = 0
            while True:
                try:
                    [loss, global_step, _] = sess.run(
                        fetches=[model.loss, model.global_step, model.update])
                    train_loss += loss
                    count += 1
                except tf.errors.OutOfRangeError:
                    logging.info(
                        "global step: %d, loss: %.5f, epoch time: %.3f",
                        global_step, train_loss / count,
                        time.time() - start_time)
                    save_model(para, sess, model)
                    break

            # validation
            load_weights(valid_para, valid_sess, valid_model)
            valid_sess.run(valid_data_generator.iterator.initializer)
            valid_loss = 0.0
            valid_rse = 0.0
            count = 0
            n_samples = 0
            all_outputs, all_labels = [], []
            while True:
                try:
                    [loss, outputs, labels] = valid_sess.run(fetches=[
                        valid_model.loss,
                        valid_model.all_rnn_outputs,
                        valid_model.labels,
                    ])
                    if para.mts:
                        valid_rse += np.sum(
                            ((outputs - labels) * valid_data_generator.scale)
                            **2)
                        all_outputs.append(outputs)
                        all_labels.append(labels)
                        n_samples += np.prod(outputs.shape)
                    valid_loss += loss
                    count += 1
                except tf.errors.OutOfRangeError:
                    break
            if para.mts:
                all_outputs = np.concatenate(all_outputs)
                all_labels = np.concatenate(all_labels)
                sigma_outputs = all_outputs.std(axis=0)
                sigma_labels = all_labels.std(axis=0)
                mean_outputs = all_outputs.mean(axis=0)
                mean_labels = all_labels.mean(axis=0)
                idx = sigma_labels != 0
                valid_corr = ((all_outputs - mean_outputs) *
                              (all_labels - mean_labels)).mean(
                                  axis=0) / (sigma_outputs * sigma_labels)
                valid_corr = valid_corr[idx].mean()
                valid_rse = (
                    np.sqrt(valid_rse / n_samples) / train_data_generator.rse)
                valid_loss /= count
                logging.info(
                    "validation loss: %.5f, validation rse: %.5f, validation corr: %.5f",
                    valid_loss, valid_rse, valid_corr)
            else:
                logging.info("validation loss: %.5f", valid_loss / count)
Exemple #9
0
def train(para, sess, model, train_data_generator):
    valid_para, valid_graph, valid_model, valid_data_generator = \
        create_valid_graph(para)

    with tf.Session(config=config_setup(), graph=valid_graph) as valid_sess:
        valid_sess.run(tf.global_variables_initializer())

        for epoch in range(1, para.num_epochs + 1):
            logging.info("\n\nEpoch: %d" % epoch)
            sess.run(train_data_generator.iterator.initializer)

            start_time = time.time()
            train_loss = 0.0
            count = 0
            while True:
                try:
                    [loss, global_step, _] = sess.run(
                        fetches=[model.loss, model.global_step, model.update])
                    train_loss += loss
                    count += 1

                    if count % 25 == 0:
                        # print(count, end=' ')
                        logging.debug(count)
                except tf.compat.v1.errors.OutOfRangeError:
                    logging.info(
                        "global step: %d, loss: %.5f, epoch time: %.3fs",
                        global_step, train_loss / count,
                        time.time() - start_time)
                    #if para.save_models:
                    save_model(para, sess, model)
                    break

            # validation
            # if para.save_models:
            load_weights(valid_para, valid_sess, valid_model)
            # else:
            #     valid_model = model
            valid_sess.run(valid_data_generator.iterator.initializer)
            valid_loss = 0.0
            valid_rse = 0.0
            tp, fp, tn, fn = 0, 0, 0, 0
            count = 0
            n_samples = 0
            all_outputs, all_labels = [], []
            while True:
                try:
                    [loss, outputs, labels] = valid_sess.run(fetches=[
                        valid_model.loss,
                        valid_model.all_rnn_outputs,
                        valid_model.labels,
                    ])
                    if para.mts:
                        valid_rse += np.sum(((outputs - labels) *
                                             valid_data_generator.scale)**2)
                        all_outputs.append(outputs)
                        all_labels.append(labels)
                        n_samples += np.prod(outputs.shape)
                    elif para.data_set == 'muse' or para.data_set == 'lpd5':
                        # print(np.shape(outputs))
                        # print(np.shape(labels))
                        # print(para.batch_size)
                        for b in range(
                                np.shape(outputs)[0]
                        ):  ##era para.batchsize, da' ultimul batch avea mai putine el
                            for p in range(128):
                                if outputs[b][p] >= 0.5 and labels[b][p] >= 0.5:
                                    tp += 1
                                elif outputs[b][p] >= 0.5 and labels[b][
                                        p] < 0.5:
                                    fp += 1
                                elif outputs[b][p] < 0.5 and labels[b][p] < 0.5:
                                    tn += 1
                                elif outputs[b][p] < 0.5 and labels[b][
                                        p] >= 0.5:
                                    fn += 1
                        # print([tp, fp, tn, fn])
                    valid_loss += loss
                    count += 1
                except tf.errors.OutOfRangeError:
                    break
            if para.mts:
                all_outputs = np.concatenate(all_outputs)
                all_labels = np.concatenate(all_labels)
                sigma_outputs = all_outputs.std(axis=0)
                sigma_labels = all_labels.std(axis=0)
                mean_outputs = all_outputs.mean(axis=0)
                mean_labels = all_labels.mean(axis=0)
                idx = sigma_labels != 0
                valid_corr = ((all_outputs - mean_outputs) *
                              (all_labels - mean_labels)).mean(
                                  axis=0) / (sigma_outputs * sigma_labels)
                valid_corr = valid_corr[idx].mean()
                valid_rse = (np.sqrt(valid_rse / n_samples) /
                             train_data_generator.rse)
                valid_loss /= count
                logging.info(
                    "validation loss: %.5f, validation rse: %.5f, validation corr: %.5f",
                    valid_loss, valid_rse, valid_corr)

            elif para.data_set == 'muse' or para.data_set == 'lpd5':
                if (tp != 0 or fp != 0):
                    precision = tp / (tp + fp)
                else:
                    precision = 0
                recall = tp / (tp + fn)
                if precision + recall >= 1e-6:
                    F1 = 2 * precision * recall / (precision + recall)
                else:
                    F1 = 0.0
                logging.info('validation loss: %.5f', valid_loss / count)
                logging.info('precision: %.5f', precision)
                logging.info('recall: %.5f', recall)
                logging.info('F1 score: %.5f', F1)
Exemple #10
0
para.logging_level = logging.INFO
logging_config_setup(para)

#%%
create_dir(para.model_dir)
create_dir(para.output_dir)
json_path = para.model_dir + '/parameters.json'
json.dump(vars(para), open(json_path, 'w'), indent=4)

# %%
graph = tf.Graph()
# %%
graph, model, data_generator = create_graph(para)

# %%
with tf.Session(config=config_setup(), graph=graph) as sess:
    sess.run(tf.global_variables_initializer())
    load_weights(para, sess, model)
    print_num_of_trainable_parameters()
    train(para, sess, model, data_generator)
# %%
para.mode = 'test'
graph, model, data_generator = create_graph(para)
with tf.Session(config=config_setup(), graph=graph) as sess:
    sess.run(tf.global_variables_initializer())
    load_weights(para, sess, model)
    print_num_of_trainable_parameters()
    test(para, sess, model, data_generator)

# %%
pred_df = pd.read_parquet(
from lib.pretrain import pretrain
from lib.rl import policy_gradient
from lib.test import test

if __name__ == "__main__":
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

    PARA = params_setup()
    create_model_dir(PARA)
    logging_config_setup(PARA)
    print_parameters(PARA)

    GRAPH, MODEL = create_graph(PARA)

    with tf.Session(config=config_setup(), graph=GRAPH) as sess:
        sess.run(tf.global_variables_initializer())
        load_weights(PARA, sess, MODEL)

        COORD = tf.train.Coordinator()
        THREADS = tf.train.start_queue_runners(sess=sess, coord=COORD)
        try:
            if PARA.mode == 'pretrain':
                pretrain(PARA, sess, MODEL)
            elif PARA.mode == 'rl':
                policy_gradient(PARA, sess, MODEL)
            elif PARA.mode == 'test':
                test(PARA, sess, MODEL)
        except KeyboardInterrupt:
            print('KeyboardInterrupt')
        finally:
Exemple #12
0
def policy_gradient(para, sess, model): # pylint: disable=too-many-locals
    """The procedure of policy gradient reinforcement learning"""
    embed_dct = read_all_embedding()

    seed_id_list = read_all_seed_ids()

    rev_vocab = read_rev_vocab()

    original_para, original_graph, original_model = create_original_graph(para)

    with tf.Session(config=config_setup(), graph=original_graph) as original_sess:
        load_original_weights(original_para, original_sess, original_model)

        step_time = 0.0
        for step in range(1, para.steps + 1):
            start_time = time.time()

            chosen_ids = random.sample(range(0, len(seed_id_list)), para.batch_size)
            seed_ids = [seed_id_list[idx] for idx in chosen_ids]

            output_lengths = random.randint(1, para.max_len - 1)

            # raw_rnn_inputs: [batch_size, output_lengths]
            raw_rnn_inputs, _ = predict(rev_vocab, embed_dct, para, sess, model,
                                        seed_ids, output_lengths, True)
            # raw_rnn_inputs_len: [batch_size]
            raw_rnn_inputs_len = np.array([output_lengths] * para.batch_size)

            # raw_inputs_embedded: [batch_size, output_lengths, embedding_size]
            rnn_inputs_embedded = read_pretrained_embedding(para, embed_dct, raw_rnn_inputs)

            # get original probs
            [probs] = original_sess.run(
                fetches=[original_model.probs],
                feed_dict={
                    original_model.rnn_inputs_embedded: rnn_inputs_embedded,
                    original_model.rnn_inputs_len: raw_rnn_inputs_len,
                })

            # get sampled ids
            [sampled_ids] = sess.run(
                fetches=[model.sampled_ids],
                feed_dict={
                    model.rnn_inputs_embedded: rnn_inputs_embedded,
                    model.rnn_inputs_len: raw_rnn_inputs_len,
                })
            sampled_ids = np.reshape(sampled_ids, (para.batch_size))

            # get reward
            rewards, msg = reward_functions(para, raw_rnn_inputs, raw_rnn_inputs_len,
                                            sampled_ids, probs)
            [_] = sess.run(
                fetches=[model.rl_update],
                feed_dict={
                    model.rnn_inputs_embedded: rnn_inputs_embedded,
                    model.rnn_inputs_len: raw_rnn_inputs_len,
                    model.sampled_ids_inputs: sampled_ids,
                    model.rewards: rewards
                })

            step_time += (time.time() - start_time)
            if step % para.steps_per_stats == 0 or step == 1:
                logging.info('step: %d, reward: %.5f, step_time: %.2f => save model to %s',
                             step, msg['mean_reward'], step_time / para.steps_per_stats,
                             save_model_dir(para))
                for key, value in msg.items():
                    if key == 'mean_reward':
                        continue
                    logging.info('%s: %.2f', key, value)
                save_model(para, sess, model)
                step_time = 0

                if para.debug == 1:
                    exit()