Exemple #1
0
def hyperloop():

    imageFolder = None
    imageNum = 0

    logger = Logger('relog')
    logger.setLogLevel('debug')
    logger.info('Started replay')

    state = State()
    for p in sys.argv:
        if (os.path.isdir(p)):
            imageFolder = p
        elif (p.isdigit()):
            imageNum = int(p)
        elif (p == "-lap"):
            state.Approaching = Signal.LAP
        elif (p == "-up"):
            state.Approaching = Signal.UPPER
        elif (p == "-lo"):
            state.Approaching = Signal.LOWER
        elif (p == "-s"):
            state.Approaching = Signal.UPPER

    if (state.Approaching != Signal.LAP):
        state.setStopSignal(1)

    camera = Camera(None, True)

    if imageFolder:
        # program loop
        files = sorted_aphanumeric(os.listdir(imageFolder))
        while True:
            try:
                file = os.path.join(imageFolder, files[imageNum])
                logger.info("[" + str(imageNum) + "] Loaded file: " + file)
                image = cv2.imread(file, 1)

                camera.capture(image)

                key = cv2.waitKey(0) & 0xFF

                if key == ord("n"):
                    # cv2.destroyAllWindows()
                    if (imageNum + 1 < len(files)):
                        imageNum += 1
                elif key == ord("b"):
                    # cv2.destroyAllWindows()
                    if (imageNum - 1 >= 0):
                        imageNum -= 1
                elif key == ord('q'):
                    break

            except KeyboardInterrupt:
                break
            except Exception as e:
                logger.logError(e)
                traceback.print_exc(limit=3, file=sys.stdout)

    logger.info('Stopped')
Exemple #2
0
    class __impl:
        def __init__(self, vs, imgOutput):
            self.__vs = vs
            self.__imgOutput = imgOutput
            self.image = None
            self.logger = Logger()
            self.state = State()
            self.tesseract = PyTessBaseAPI(psm=PSM.SINGLE_CHAR,
                                           oem=OEM.LSTM_ONLY,
                                           lang="digits")
            self.filter = Filter()

            self.signalThresholdY = 160
            self.LAPPatternSesibility = 5

            self.recordStamp = time.strftime(self.logger.timeFormat)
            self.recordNum = 0
            self.recordFolder = None
            self.cntNum = 0

            if (self.state.RecordImage):
                root = 'record'
                if not os.path.isdir(root):
                    os.mkdir(root)
                self.recordFolder = os.path.join(root, self.recordStamp)
                if not os.path.isdir(self.recordFolder):
                    os.mkdir(self.recordFolder)

        def showImg(self, window, image):
            if self.__imgOutput:
                cv2.imshow(window, image)

        def warmup(self):
            time.sleep(2.0)
            self.tesserOCR(np.zeros((1, 1, 3), np.uint8))

        def tesserOCR(self, image):
            self.tesseract.SetImage(Image.fromarray(image))
            return self.tesseract.GetUTF8Text(
            ), self.tesseract.AllWordConfidences()

        def dominantColor(self, img, clusters=2):
            data = np.reshape(img, (-1, 3))
            data = np.float32(data)

            criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10,
                        1.0)
            flags = cv2.KMEANS_RANDOM_CENTERS
            _, _, centers = cv2.kmeans(data, 1, None, criteria, 10, flags)
            return centers[0].astype(np.int32)

        def analyzeRect(self, image, warped, box, x, y):
            # find amount of color blue in warped area, assuming over X% is the lap signal
            if (self.getAmountOfColor(warped, Colors.lower_blue_color,
                                      Colors.upper_blue_color, True) > 0.1):
                self.logger.info("Rundensignal")
                self.state.setCurrentSignal(Signal.LAP)
                return "Rundensignal"

        def analyzeSquare(self, image, warped, box, x, y):

            #dominantColor, percent, _ = self.dominantColor(warped, 3)
            # dominantColor = self.dominantColor(
            #    cv2.cvtColor(warped, cv2.COLOR_BGR2HSV), 3)
            """  color = 'k'
             # find amount of color black in warped area, assuming over X% is a numeric signal
             if ((dominantColor <= 70).all()):
                 color = 'Black'

             elif ((dominantColor >= 180).all()):
                 color = 'White'

             if (color): """
            resizedWarp = cv2.resize(warped,
                                     None,
                                     fx=2.0,
                                     fy=2.0,
                                     interpolation=cv2.INTER_CUBIC)

            # gray
            optimized = cv2.cvtColor(resizedWarp, cv2.COLOR_BGR2GRAY)

            # blur
            optimized = cv2.GaussianBlur(optimized, (5, 5), 0)

            # binary image
            optimized = cv2.threshold(optimized, 0, 255,
                                      cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

            # binary inversion if dominant color is black
            """ if (color == 'Black'):
                optimized = cv2.bitwise_not(optimized) """

            # now check the frame (1px) of the image.. there shouldn't be any noise since its a clean signal background
            h, w = optimized.shape[0:2]
            clean = optimized[0, 0]
            for iFrame in range(0, 2):
                for iHeight in range(h):
                    if not (optimized[iHeight, iFrame] == clean) or not (
                            optimized[iHeight, w - 1 - iFrame] == clean):
                        return False
                for iWidth in range(w):
                    # or not(optimized[h - iFrame, iWidth])
                    if not (optimized[iFrame, iWidth] == clean):
                        return False

            # cv2.imwrite("records/opt/" + str(self.cntNum) + ".jpg", optimized)

            output, confidence = self.tesserOCR(optimized)

            # if the resulting text is below X% confidence threshold, we skip it
            if not output or confidence[0] < 95:
                return False

            # clean up output from tesseract
            output = output.replace('\n', '')
            output = output.replace(' ', '')

            if output.isdigit() and 0 < int(output) < 10:
                """ self.showImg("opt " + str(self.cntNum),
                                np.hstack((resizedWarp, cv2.cvtColor(optimized, cv2.COLOR_GRAY2BGR)))) """
                if y <= self.signalThresholdY:
                    self.logger.info('Stop Signal OCR: ' + output + ' X: ' +
                                     str(x) + ' Y: ' + str(y) +
                                     ' Confidence: ' + str(confidence[0]) +
                                     '%')  # + ' DC: ' + str(dominantColor))
                    self.state.setStopSignal(int(output))
                    return 'S: ' + output
                elif self.state.StopSignalNum != 0:
                    self.logger.info('Info Signal OCR: ' + output + ' X: ' +
                                     str(x) + ' Y: ' + str(y) +
                                     ' Confidence: ' + str(confidence[0]) +
                                     '%')  # + ' DC: ' + str(dominantColor))
                    self.state.setCurrentSignal(Signal.UPPER, int(output))
                    return 'I: ' + output

        def getAmountOfColor(self,
                             img,
                             lowerColor,
                             upperColor,
                             convert2hsv=True):
            if (convert2hsv):
                img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

            # create mask from color range
            maskColor = cv2.inRange(img, lowerColor, upperColor)
            # get ratio of active pixels
            ratio_color = cv2.countNonZero(maskColor) / (img.size)
            return ratio_color

        # color picker for manual debugging
        def pick_color(self, event, x, y, flags, param):
            if event == cv2.EVENT_LBUTTONDOWN:
                pixel = self.image[y, x]
                color = np.array([pixel[0], pixel[1], pixel[2]])
                self.logger.info(pixel)

        # capture frames from the camera
        def capture(self, savedImg=None):
            if (savedImg is not None):
                image = savedImg
            else:
                image = self.__vs.read()
                if (self.state.InvertCamera):
                    image = imutils.rotate(image, angle=180)

            self.image = image

            if (self.state.RecordImage):
                self.recordNum += 1
                cv2.imwrite(
                    os.path.join(self.recordFolder,
                                 str(self.recordNum) + ".jpg"), image)
                return

            if (self.state.Approaching == Signal.UPPER
                    or self.state.Approaching == Signal.LOWER):
                self.findNumberSignal(image)
            elif (self.state.Approaching == Signal.LAP):
                self.findLapSignal(image)

        def findLapSignal(self, image):
            contourImage = image.copy()

            blur = cv2.GaussianBlur(image, (3, 3), 0)
            hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
            self.image = hsv
            mask = cv2.inRange(hsv, Colors.lower_blue_color,
                               Colors.upper_blue_color)

            cnts = imutils.grab_contours(
                cv2.findContours(mask.copy(), cv2.RETR_LIST,
                                 cv2.CHAIN_APPROX_SIMPLE))

            if len(cnts) > 0:

                # transform all contours to rects
                rects = [cv2.boundingRect(cnt) for cnt in cnts]

                # now iterate all of the rects, trying to find an approximated sibiling shifted in Y-direction
                for rect in rects:
                    (x, y, w, h) = rect
                    cv2.rectangle(contourImage, (x, y), (x + w, y + h),
                                  (0, 0, 255), 2)

                    # try to match the pattern from a given rect in all rects
                    counterPart = [
                        counterRect for counterRect in rects
                        if (counterRect != rect and x - 5 <= counterRect[0] <=
                            x + 5 and 2 * -(h + 5) <= y - counterRect[1] <= 2 *
                            (h + 5) and w - 5 <= counterRect[2] <= w + 5)
                        and h - 5 <= counterRect[3] <= h + 5
                    ]

                    if (counterPart):
                        (x, y, w, h) = counterPart[0]
                        cv2.rectangle(contourImage, (x, y), (x + w, y + h),
                                      (0, 255, 0), 2)
                        self.logger.info('LAP Signal')
                        self.state.captureLapSignal()
                        break

            self.showImg(
                'contourImage',
                np.hstack(
                    (hsv, contourImage, cv2.cvtColor(mask,
                                                     cv2.COLOR_GRAY2BGR))))
            cv2.setMouseCallback('contourImage', self.pick_color)

        def findNumberSignal(self, image):

            image_height = np.size(image, 0)
            image_width = np.size(image, 1)

            contourImage = image.copy()

            # focus only on the part of the image, where a signal could occur
            # image = image[int(image.shape[0] * 0.2):int(image.shape[0] * 0.8), 0:int(image.shape[1]*0.666)]

            mask = self.filter.autoCanny(image, 2, 3)

            # get a list of contours in the mask, chaining to just endpoints
            cnts = imutils.grab_contours(
                cv2.findContours(mask.copy(), cv2.RETR_LIST,
                                 cv2.CHAIN_APPROX_SIMPLE))

            # only proceed if at least one contour was found
            if len(cnts) > 0:
                # loop contours
                for self.cntNum, cnt in enumerate(cnts):

                    rect = cv2.minAreaRect(cnt)
                    _, _, angle = rect

                    # approximate shape
                    approx = cv2.approxPolyDP(cnt,
                                              0.02 * cv2.arcLength(cnt, True),
                                              True)

                    # the rectangle must not have a too big rotation (+/-10)
                    # and more than 3 connecting points
                    if len(approx) >= 3 and (-90 <= angle <= -80
                                             or angle >= -10):

                        box = cv2.boxPoints(rect)
                        box = np.int0(box)

                        (x, y, w, h) = cv2.boundingRect(approx)

                        # limit viewing range
                        if (y <= image_height * 0.2 or x >= image_width * 0.8):
                            continue

                        if (w <= 5 or h <= 5):
                            continue

                        # we are in approaching mode, thus we only care for the lower signals <= threshold
                        if ((self.state.Approaching == Signal.UPPER
                             and y >= self.signalThresholdY)
                                and not self.state.Standalone):
                            continue
                        elif ((self.state.Approaching == Signal.LOWER
                               and y <= self.signalThresholdY)
                              and not self.state.Standalone):
                            continue

                        sideRatio = w / float(h)

                        absoluteSizeToImageRatio = (
                            100 / (image_width * image_height)) * (w * h)

                        # calculate area of the bounding rectangle
                        rArea = w * float(h)

                        # calculate area of the contour
                        cArea = cv2.contourArea(cnt)
                        if (cArea):
                            rectContAreaRatio = (100 / rArea) * cArea
                        else:
                            continue

                        # cv2.drawContours(contourImage, [box], 0, (255, 0, 0), 1)
                        result = None

                        # is the rectangle sideways, check for lap signal
                        # if (h*2 < w and y <= self.signalThresholdY and rectContAreaRatio >= 80):
                        #result = self.analyzeRect(image, four_point_transform(image, [box][0]), box, x, y)
                        # find all contours looking like a signal with minimum area (1%)
                        if absoluteSizeToImageRatio >= 0.01:
                            # is it approx a square, or standing rect? then check for info or stop signal
                            if 0.2 <= sideRatio <= 1.1:
                                # transform ROI
                                if (sideRatio <= 0.9):
                                    coords, size, angle = rect
                                    size = size[0] + 8, size[1] + 4
                                    coords = coords[0] + 1, coords[1] + 1

                                    rect = coords, size, angle
                                    box = cv2.boxPoints(rect)
                                    box = np.int0(box)
                                """ cv2.drawContours(
                                    contourImage, [box], 0, (0, 255, 0), 1) """

                                warp = four_point_transform(image, [box][0])

                                result = self.analyzeSquare(
                                    image, warp, box, x, y)

                        if (result):
                            if (self.__imgOutput):
                                color = None
                                if (y >= self.signalThresholdY):
                                    color = (0, 0, 255)
                                else:
                                    color = (255, 0, 0)

                                cv2.drawContours(contourImage, [box], 0, color,
                                                 1)
                                cv2.drawContours(contourImage, [cnt], -1,
                                                 color, 2)
                                """ M = cv2.moments(cnt)
                                cX = int(M["m10"] / M["m00"])
                                cY = int(M["m01"] / M["m00"])
                                cv2.putText(contourImage, str(
                                    self.cntNum), (cX - 30, cY - 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) """

                                self.logger.debug(
                                    "[" + str(self.cntNum) + "] SideRatio: " +
                                    str(sideRatio) + " AreaRatio: " +
                                    str(rectContAreaRatio) + " ContArea: " +
                                    str(cArea) + " RectArea: " + str(rArea) +
                                    " AbsSize: " +
                                    str(absoluteSizeToImageRatio) +
                                    " CntPoints: " + str(len(approx)) +
                                    " Size: " + str(w) + "x" + str(h))
            """ if (self.__imgOutput):  # hsv img output
                hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
                cv2.namedWindow('contourImage')
                cv2.setMouseCallback('contourImage', self.pick_color)
                # self.showImg("hsv", hsv) """

            self.showImg(
                "contourImage",
                np.hstack((contourImage, cv2.cvtColor(mask,
                                                      cv2.COLOR_GRAY2BGR))))