Exemple #1
0
    def extract_features(self, x):
        coords = x['coordinates']

        sinput, inds_list = self.create_sparse_tensors(coords)
        features_dict = self.feature_extractor(sinput)
        features = features_dict["features"]
        if "attention" in features_dict.keys():
            att = features_dict["attention"]

        batch_indices = list(features.coords_man.get_batch_indices())
        features_LL = TensorListList()
        att_LL = TensorListList()
        coords_ds_LL = TensorListList()
        inds_LL = []
        ind_cnt = 0
        for coords_b in coords:
            features_L = TensorList()
            att_L = TensorList()
            coords_ds_L = TensorList()
            inds_L = []
            for coords_s in coords_b:
                mask = features.C[:, 0] == batch_indices[ind_cnt]

                # hacky way of finding batch channel dimension
                if mask.int().sum() != inds_list[ind_cnt].shape[0]:
                    mask = features.C[:, -1] == batch_indices[ind_cnt]

                f = features.F[mask]
                assert f.shape[0] == inds_list[ind_cnt].shape[0]
                if "attention" in features_dict.keys():
                    a = att.F[mask]
                    assert a.shape[0] == inds_list[ind_cnt].shape[0]
                    att_L.append(a)

                features_L.append(f.permute(1, 0))

                coords_ds_L.append(coords_s[:, inds_list[ind_cnt]])
                inds_L.append(inds_list[ind_cnt])

                ind_cnt = ind_cnt + 1

            features_LL.append(features_L)
            att_LL.append(att_L)
            coords_ds_LL.append(coords_ds_L)
            inds_LL.append(inds_L)

        out = dict()
        out['features'] = features_LL
        out['att'] = att_LL
        out['coordinates_ds'] = coords_ds_LL.to(self.params.device)
        out['indices'] = inds_LL
        out['coordinates'] = x['coordinates']

        return out
Exemple #2
0
    def forward(self, x):
        coords = x['coordinates'].clone()
        t_tot = time.time()

        features_LL = TensorListList()
        att_LL = TensorListList()
        coords_ds_LL = TensorListList()
        inds_LL = []
        ind_cnt = 0
        for coords_b in coords:
            features_L = TensorList()
            att_L = TensorList()
            coords_ds_L = TensorList()
            inds_L = []
            for coords_s in coords_b:
                pcd_down, f = self.preprocess_point_cloud(
                    coords_s, self.params.voxel_size)

                features_L.append(f)
                coords_ds_L.append(pcd_down)

                ind_cnt = ind_cnt + 1

            features_LL.append(features_L)
            att_LL.append(att_L)
            coords_ds_LL.append(coords_ds_L)
            inds_LL.append(inds_L)

        x = dict()
        x['features'] = self.cluster_features(
            features_LL,
            self.params.feature_distr_parameters.num_feature_clusters)
        x['att'] = att_LL
        x['coordinates_ds'] = coords_ds_LL.to(self.params.device)
        x['indices'] = inds_LL

        out = self.registration(x)
        tot_time = time.time() - t_tot
        print("tot time: %.1f ms" % (tot_time * 1000))

        out["time"] = tot_time
        out["features"] = features_LL
        out["indices"] = inds_LL
        out["coordinates_ds"] = coords_ds_LL

        return out
Exemple #3
0
class MultinomialModel(BaseFeatureModel):
    def __init__(self, parameters, K, features, repeat_list):
        self.params = parameters
        self.repeat_list = repeat_list
        self.initialize(K, features)

    def initialize(self, K, features):
        init_method = self.params.get("init_method", "dirichlet")
        if init_method == "uniform":
            init_distr_list = []
            for i in range(len(features)):
                init_distr_list.append(
                    torch.ones(K, self.params.num_feature_clusters).float() /
                    self.params.num_feature_clusters)
        elif init_method == "dirichlet":
            init_distr_list = TensorList()
            relative_distr = features.sum(dim=1).sum_list()
            relative_distr = relative_distr / relative_distr.sum()
            for r in relative_distr:
                dir = torch.distributions.dirichlet.Dirichlet(r)
                init_distr_list.append(dir.sample((K, )))
        else:
            init_distr_list = []
            for i in range(len(features)):
                init_distr_list.append(
                    torch.ones(K, self.params.num_feature_clusters).float() /
                    self.params.num_feature_clusters)

        self.distr = TensorListList(init_distr_list, repeat=self.repeat_list)

    def to(self, dev):
        self.distr = self.distr.to(dev)

    def posteriors(self, y):
        p = y.permute(1, 0) @ self.distr.permute(1, 0)  # marginalization
        return p

    def maximize(self, ap, ow, y, den):
        tmp = y / den.permute(1, 0)
        as_sum = (tmp @ (ow * ap)).sum_list()
        self.distr = self.distr * TensorListList(as_sum.permute(1, 0),
                                                 repeat=self.repeat_list)
        self.distr = self.distr / self.distr.sum(dim=1, keepdims=True)
Exemple #4
0
class VonMisesModelList(BaseFeatureModel):
    def __init__(self, parameters, K, features, s, mu, repeat_list):
        self.params = parameters
        self.mu = self.initialize_mu(K, features)
        if len(mu) > 0:
            self.mu = TensorListList(mu, repeat=repeat_list)

        self.K = K
        self.repeat_list = repeat_list
        self.s2 = s * s
        self.local_posterior = 1

    def to(self, dev):
        self.mu = self.mu.to(dev)

    def initialize_mu(self, K, features):
        X = TensorList()
        for TV in features:
            Xi = np.random.randn(TV[0].shape[0], K).astype(np.float32)
            Xi = torch.from_numpy(Xi).to(TV[0].device)
            Xi = Xi / torch.norm(Xi, dim=0, keepdim=True)
            X.append(Xi.permute(1, 0))

        return X

    def posteriors(self, y):
        log_p = y.permute(1, 0) @ TensorListList(self.mu.permute(1, 0),
                                                 repeat=self.repeat_list)
        p = log_p / self.s2
        return p.exp()

    def maximize(self, a, y, den):
        self.mu = ((y @ a).sum_list()).permute(1, 0)
        self.mu = self.mu / self.mu.norm(dim=-1, keepdim=True)
        return

    def detach(self):
        self.mu = self.mu.detach()
Exemple #5
0
    def register_point_sets(self, x):
        Vs = x["coordinates_ds"]
        features = x["features"]
        features_w = x["att"]
        repeat_list = [len(V) for V in Vs]
        init_R, init_t = get_init_transformation_list(
            Vs, self.params.get("mean_init", True))
        TVs = init_R @ Vs + init_t

        X = TensorList()
        Q = TensorList()
        mu = TensorList()
        for TV, Fs in zip(TVs, features):
            if self.params.cluster_init == "box":
                Xi = get_randn_box_cluster_means_list(TV, self.params.K)
            else:
                Xi = get_randn_sphere_cluster_means_list(
                    TV, self.params.K,
                    self.params.get("cluster_mean_scale", 1.0))
            Q.append(
                get_scaled_cluster_precisions_list(
                    TV, Xi, self.params.cluster_precision_scale))
            X.append(Xi.T)

        feature_distr = feature_models.MultinomialModel(
            self.params.feature_distr_parameters,
            self.params.K,
            features,
            repeat_list=repeat_list)

        feature_distr.to(self.params.device)

        X = TensorListList(X, repeat=repeat_list)
        self.betas = get_default_beta(Q, self.params.gamma)

        Vs = Vs
        TVs = TVs

        # Compute the observation weights
        if self.params.use_dare_weighting:
            observation_weights = empirical_estimate(Vs, self.params.ow_args)
            ow_reg_factor = 8.0
            ow_mean = observation_weights.mean(dim=0, keepdim=True)
            for idx in range(len(observation_weights)):
                for idxx in range(len(observation_weights[idx])):
                    observation_weights[idx][idxx][observation_weights[idx][idxx] > ow_reg_factor * ow_mean[idx][idxx]] \
                        = ow_reg_factor * ow_mean[idx][idxx]

        else:
            observation_weights = 1.0

        ds = TVs.permute(1, 0).sqe(X).permute(1, 0)

        if self.params.debug:
            self.visdom.register(
                dict(pcds=Vs[0].cpu(), X=X[0][0].cpu(), c=None),
                'point_clouds', 2, 'init')
            time.sleep(1)

        Rs = init_R.to(self.params.device)
        ts = init_t.to(self.params.device)

        self.betas = TensorListList(self.betas, repeat=repeat_list)
        QL = TensorListList(Q, repeat=repeat_list)
        Riter = TensorListList()
        titer = TensorListList()
        TVs_iter = TensorListList()
        for i in range(self.params.num_iters):
            Qt = QL.permute(1, 0)

            ap = (-0.5 * ds * QL).exp() * QL.pow(1.5)

            if i < 1000:
                pyz_feature = feature_distr.posteriors(features)
            else:
                pyz_feature = 1.0

            a = ap * pyz_feature

            ac_den = a.sum(dim=-1, keepdim=True) + self.betas
            a = a / ac_den  # normalize row-wise
            a = a * observation_weights

            L = a.sum(dim=-2, keepdim=True).permute(1, 0)
            W = (Vs @ a) * QL

            b = L * Qt  # weights, b
            mW = W.sum(dim=-1, keepdim=True)
            mX = (b.permute(1, 0) @ X).permute(1, 0)
            z = L.permute(1, 0) @ Qt
            P = (W @ X).permute(1, 0) - mX @ mW.permute(1, 0) / z

            # Compute R and t
            svd_list_list = P.cpu().svd()
            Rs = TensorListList()
            for svd_list in svd_list_list:
                Rs_list = TensorList()
                for svd in svd_list:
                    uu, vv = svd.U, svd.V
                    vvt = vv.permute(1, 0)
                    detuvt = uu @ vvt
                    detuvt = detuvt.det()
                    S = torch.ones(1, 3)
                    S[:, -1] = detuvt
                    Rs_list.append((uu * S) @ vvt)

                Rs.append(Rs_list)

            Rs = Rs.to(self.params.device)
            Riter.append(Rs)
            ts = (mX - Rs @ mW) / z
            titer.append(ts)
            TVs = Rs @ Vs + ts

            TVs_iter.append(TVs.clone())
            if self.params.debug:
                self.visdom.register(
                    dict(pcds=TVs[0].cpu(), X=X[0][0].cpu(), c=None),
                    'point_clouds', 2, 'registration-iter')
                time.sleep(0.2)
            # Update X
            den = L.sum_list()

            if self.params.fix_cluster_pos_iter < i:
                X = (TVs @ a).permute(1, 0)
                X = TensorListList(X.sum_list() / den, repeat_list)

            # Update Q
            ds = TVs.permute(1, 0).sqe(X).permute(1, 0)

            wn = (a * ds).sum(dim=-2, keepdim=True).sum_list()
            Q = (3 * den /
                 (wn.permute(1, 0) + 3 * den * self.params.epsilon)).permute(
                     1, 0)
            QL = TensorListList(Q, repeat=repeat_list)

            feature_distr.maximize(ap=ap,
                                   ow=observation_weights,
                                   y=features,
                                   den=ac_den)

        out = dict(Rs=Rs,
                   ts=ts,
                   X=X,
                   Riter=Riter[:-1],
                   titer=titer[:-1],
                   Vs=TVs,
                   Vs_iter=TVs_iter[:-1],
                   ow=observation_weights)
        return out
Exemple #6
0
    def forward(self, x):
        coords = x['coordinates'].clone()
        t_tot = time.time()

        sinput, inds_list = self.create_sparse_tensors(coords)
        features_dict = self.feature_extractor(sinput)
        features = features_dict["features"]
        if "attention" in features_dict.keys():
            att = features_dict["attention"]

        if torch.isnan(features.feats).any():
            print("nans in features!")

        batch_indices = list(features.coords_man.get_batch_indices())
        features_LL = TensorListList()
        att_LL = TensorListList()
        coords_ds_LL = TensorListList()
        inds_LL = []
        ind_cnt = 0
        for coords_b in coords:
            features_L = TensorList()
            att_L = TensorList()
            coords_ds_L = TensorList()
            inds_L = []
            for coords_s in coords_b:
                mask = features.C[:, 0] == batch_indices[ind_cnt]
                if mask.int().sum() != inds_list[ind_cnt].shape[0]:
                    mask = features.C[:, -1] == batch_indices[ind_cnt]

                f = features.F[mask]
                assert f.shape[0] == inds_list[ind_cnt].shape[0]
                if "attention" in features_dict.keys():
                    a = att.F[mask]
                    assert a.shape[0] == inds_list[ind_cnt].shape[0]
                    att_L.append(a)

                features_L.append(f)

                coords_ds_L.append(coords_s[:, inds_list[ind_cnt]])
                inds_L.append(inds_list[ind_cnt])

                ind_cnt = ind_cnt + 1

            features_LL.append(features_L)
            att_LL.append(att_L)
            coords_ds_LL.append(coords_ds_L)
            inds_LL.append(inds_L)

        x = dict()
        x['features'] = self.cluster_features(
            features_LL,
            self.params.feature_distr_parameters.num_feature_clusters)
        x['att'] = att_LL
        x['coordinates_ds'] = coords_ds_LL.to(self.params.device)
        x['indices'] = inds_LL

        out = self.registration(x)

        tot_time = time.time() - t_tot
        print("tot time: %.1f ms" % (tot_time * 1000))

        out["time"] = tot_time
        out["features"] = features_LL
        out["indices"] = inds_LL
        out["coordinates_ds"] = coords_ds_LL

        return out
Exemple #7
0
    def forward(self, x_in):
        coords = x_in['coordinates'].clone()
        t_tot = time.time()
        sinput, inds_list = self.create_sparse_tensors(coords)
        resample_time = time.time() - t_tot
        print("resample time: %.1f ms" % ((resample_time) * 1000))
        if not self.params.feature_distr_parameters.model=='none':
            features_dict = self.feature_extractor(sinput)
            features = features_dict["features"]
            if "attention" in features_dict.keys():
                att = features_dict["attention"]

            extract_time=time.time()-t_tot
            print("extract time: %.1f ms" % ((extract_time) * 1000))
            batch_indices = list(features.coords_man.get_batch_indices())
        else:
            features_dict=None
            extract_time=0

        time_preprocess = time.time()

        features_LL = TensorListList()
        att_LL = TensorListList()
        coords_ds_LL = TensorListList()
        inds_LL = []
        ind_cnt = 0
        for coords_b in coords:
            features_L = TensorList()
            att_L = TensorList()
            coords_ds_L = TensorList()
            inds_L = []
            for coords_s in coords_b:
                if not features_dict is None:
                    mask = features.C[:, 0] == batch_indices[ind_cnt]

                    # hacky way of finding batch channel dimension
                    if mask.int().sum() != inds_list[ind_cnt].shape[0]:
                        mask = features.C[:, -1] == batch_indices[ind_cnt]

                    f = features.F[mask]
                    assert f.shape[0] == inds_list[ind_cnt].shape[0]
                    if "attention" in features_dict.keys():
                        a = att.F[mask]
                        assert a.shape[0] == inds_list[ind_cnt].shape[0]
                        att_L.append(a)

                    features_L.append(f.permute(1, 0))

                coords_ds_L.append(coords_s[:, inds_list[ind_cnt]])
                inds_L.append(inds_list[ind_cnt])

                ind_cnt = ind_cnt + 1

            features_LL.append(features_L)
            att_LL.append(att_L)
            coords_ds_LL.append(coords_ds_L)
            inds_LL.append(inds_L)

        x = dict()
        x['features'] = features_LL
        x['att'] = att_LL
        x['coordinates_ds'] = coords_ds_LL.to(self.params.device)
        x['indices'] = inds_LL
        x['coordinates'] = x_in['coordinates']

        print("preprocess time: %.1f ms" % ((time.time()-time_preprocess) * 1000))

        reg_time=time.time()
        out = self.registration(x)
        reg_time2 = time.time() - reg_time
        print("reg time: %.1f ms" % ((time.time() - reg_time) * 1000))
        tot_time = time.time() - t_tot
        print("tot time: %.1f ms" % (tot_time * 1000))

        out["time"] = tot_time
        out["reg_time"] = reg_time2
        out["extract_time"] =extract_time
        out["resample_time"] = resample_time
        out["coordinates_ds"] = coords_ds_LL

        return out
Exemple #8
0
    def __call__(self, batch, epoch):
        if self.epoch != epoch:
            self.epoch = epoch
            self.iter_cnt = 0
            self.num_success_acc = 0

        data, info = batch
        batch_size = len(data['coordinates'])
        device = self.model.params.device
        loss_iter = 0
        loss = 0
        final_loss = 0

        out_feat = self.model.extract_features(data)
        features = out_feat["features"]
        info["R_gt"] = info["R_gt"].to(device)
        info["t_gt"] = info["t_gt"].to(device)

        num_pairs = 0
        for fb in features:
            M = len(fb)
            for ind1 in range(M - 1):
                for ind2 in range(ind1 + 1, M):
                    num_pairs = num_pairs + 1

        # check valid pairs wrt number of correspondences
        # invalid pairs are ignored in the computation of the loss
        valid_pairs_LL = []
        if self.min_corresponence_rate > 0.0:
            correspondences = []
            for coord_ds, r, t in zip(out_feat["coordinates_ds"], info["R_gt"],
                                      info["t_gt"]):
                correspondences.append(
                    utils.extract_correspondences_gpu(coord_ds, r, t))

            for fb, corr in zip(features, correspondences):
                db = corr["distances"].to(device)
                M = len(fb)
                cnt = 0
                valid_pairs_L = []
                for ind1 in range(M - 1):
                    for ind2 in range(ind1 + 1, M):
                        mask = db[cnt] < self.th
                        corrs_rate = mask.sum().float() / mask.shape[0]
                        valid_pairs_L.append(
                            corrs_rate > self.min_corresponence_rate)
                        cnt = cnt + 1

                valid_pairs_LL.append(sum(valid_pairs_L))

        else:
            for fb in features:
                cnt = 0
                M = len(fb)
                for ind1 in range(M - 1):
                    for ind2 in range(ind1 + 1, M):
                        cnt = cnt + 1

                valid_pairs_LL.append(cnt)

        Rgt, tgt = info["R_gt"], info["t_gt"]

        num_samples = sum(v > 0.0 for v in valid_pairs_LL)
        if self.min_corresponence_rate > 0.0:
            self.iter_cnt += num_samples.item()
        else:
            self.iter_cnt += num_samples

        # only compute loss is there is at least one valid pair in the batch
        if sum(valid_pairs_LL) == 0:
            return loss, self.num_success_acc / (self.iter_cnt)

        if sum(valid_pairs_LL) < num_pairs:
            out_feat_filt = dict()
            for k in out_feat.keys():
                out_feat_filt[k] = TensorListList([
                    out_feat[k][i] for i in range(len(out_feat[k]))
                    if valid_pairs_LL[i]
                ])

            Rgt = TensorListList(
                [Rgt[i] for i in range(batch_size) if valid_pairs_LL[i]])
            tgt = TensorListList(
                [tgt[i] for i in range(batch_size) if valid_pairs_LL[i]])
            out_feat = out_feat_filt

        out_reg = self.model.register(out_feat)
        if not self.vis is None:
            self.vis(out_reg, info, data)

        Rs, ts = out_reg["Rs"], out_reg["ts"]
        Riter, titer = out_reg["Riter"], out_reg["titer"]
        Rgt = Rgt.to(Rs[0][0].device)
        tgt = tgt.to(ts[0][0].device)

        rot_errs = utils.L2sqrList(Rs.detach(), Rgt).sqrt()
        trans_errs = utils.L2sqrTransList(ts.detach(), tgt, Rs.detach(),
                                          Rgt).sqrt()

        # check number of successful registrations
        num_success = 0
        valid_list = []
        for rs_err, ts_err in zip(rot_errs, trans_errs):
            for rerr, terr in zip(rs_err, ts_err):
                val = (rerr < self.eval_rot_err_thresh) * (
                    terr < self.eval_trans_err_thresh)
                valid_list.append(val.item())
                num_success = num_success + val.item()

        self.num_success_acc += num_success

        # compute registration error per iteration
        for Rit, tit, w in zip(
                Riter, titer, self.weight["Vs_iter"][self.compute_loss_iter:]):
            if w > 0:
                trans_errs2 = utils.GARPointList(tit,
                                                 tgt,
                                                 Rit,
                                                 Rgt,
                                                 V=out_feat["coordinates_ds"],
                                                 c=self.c,
                                                 alpha=self.alpha)
                for terr in trans_errs2:
                    for t in terr:
                        loss_iter = loss_iter + w * t

        # compute final registration error
        if self.weight["Vs"] > 0.0:
            trans_errs2 = utils.GARPointList(ts,
                                             tgt,
                                             Rs,
                                             Rgt,
                                             V=out_feat["coordinates_ds"],
                                             c=self.c,
                                             alpha=self.alpha)

            for terr in trans_errs2:
                for t in terr:
                    final_loss = final_loss + self.weight["Vs"] * t

        print("num valid: ", num_success, "num_success_acc rate: ",
              self.num_success_acc / (self.iter_cnt))

        if sum(valid_pairs_LL):
            loss = loss + final_loss + loss_iter
            loss = loss / num_samples

        return loss, self.num_success_acc / (self.iter_cnt)