def is_compound_type(type_str): if not util.is_str(type_str): return False for subtype in type_str.split("|"): if subtype not in consts.ALL_TYPES: return False return True
def add_tf_types(config): if not util.is_dict(config): return type_fields = {} for k, v in config.items(): if util.is_str(k) and util.is_str(v) and v in consts.COLUMN_TYPES: type_fields[k] = v elif util.is_dict(v): add_tf_types(v) elif util.is_list(v): for sub_v in v: add_tf_types(sub_v) for k, v in type_fields.items(): config[k + "_tf"] = CORTEX_TYPE_TO_TF_TYPE[v]
def _expand_columns_input_dict(self, input_columns_dict): expanded = {} for column_name, value in input_columns_dict.items(): if util.is_str(value): expanded[column_name] = self.column_config(value) elif util.is_list(value): expanded[column_name] = [self.column_config(name) for name in value] return expanded
def _expand_feature_inputs_dict(self, input_features_dict): expanded = {} for feature_name, value in input_features_dict.items(): if util.is_str(value): expanded[feature_name] = self.feature_config(value) elif util.is_list(value): expanded[feature_name] = [ self.feature_config(name) for name in value ] return expanded
def create_inputs_map(values_map, input_config): inputs = {} for input_name, input_config_item in input_config.items(): if util.is_str(input_config_item): inputs[input_name] = values_map[input_config_item] elif util.is_int(input_config_item): inputs[input_name] = values_map[input_config_item] elif util.is_list(input_config_item): inputs[input_name] = [values_map[f] for f in input_config_item] else: raise CortexException("invalid column inputs") return inputs
def create_inputs_from_features_map(features_values_map, feature_input_config): inputs = {} for input_name, input_config_item in feature_input_config.items(): if util.is_str(input_config_item): inputs[input_name] = features_values_map[input_config_item] elif util.is_int(input_config_item): inputs[input_name] = features_values_map[input_config_item] elif util.is_list(input_config_item): inputs[input_name] = [ features_values_map[f] for f in input_config_item ] else: raise CortexException("invalid feature inputs") return inputs
def create_transformer_inputs_from_map(input, col_value_map): if util.is_str(input): if util.is_resource_ref(input): res_name = util.get_resource_ref(input) return col_value_map[res_name] return input if util.is_list(input): replaced = [] for item in input: replaced.append(create_transformer_inputs_from_map(item, col_value_map)) return replaced if util.is_dict(input): replaced = {} for key, val in input.items(): key_replaced = create_transformer_inputs_from_map(key, col_value_map) val_replaced = create_transformer_inputs_from_map(val, col_value_map) replaced[key_replaced] = val_replaced return replaced return input
def cast_compound_type(value, type_str): allowed_types = type_str.split("|") if consts.VALUE_TYPE_INT in allowed_types: if util.is_int(value): return value if consts.VALUE_TYPE_FLOAT in allowed_types: if util.is_int(value): return float(value) if util.is_float(value): return value if consts.VALUE_TYPE_STRING in allowed_types: if util.is_str(value): return value if consts.VALUE_TYPE_BOOL in allowed_types: if util.is_bool(value): return value raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(type_str), util.user_obj_str(value) ) )
def populate_values(self, input, input_schema, preserve_column_refs): if input is None: if input_schema is None: return None if input_schema.get("_allow_null") == True: return None raise UserException("Null value is not allowed") if util.is_resource_ref(input): res_name = util.get_resource_ref(input) if res_name in self.constants: if self.constants[res_name].get("value") is not None: const_val = self.constants[res_name]["value"] elif self.constants[res_name].get("path") is not None: const_val = self.storage.get_json_external(self.constants[res_name]["path"]) try: return self.populate_values(const_val, input_schema, preserve_column_refs) except CortexException as e: e.wrap("constant " + res_name) raise if res_name in self.aggregates: agg_val = self.get_obj(self.aggregates[res_name]["key"]) try: return self.populate_values(agg_val, input_schema, preserve_column_refs) except CortexException as e: e.wrap("aggregate " + res_name) raise if res_name in self.columns: if input_schema is not None: col_type = self.get_inferred_column_type(res_name) if col_type not in input_schema["_type"]: raise UserException( "column {}: unsupported input type (expected type {}, got type {})".format( res_name, util.data_type_str(input_schema["_type"]), util.data_type_str(col_type), ) ) if preserve_column_refs: return input else: return res_name if util.is_list(input): elem_schema = None if input_schema is not None: if not util.is_list(input_schema["_type"]): raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(input_schema["_type"]), util.user_obj_str(input) ) ) elem_schema = input_schema["_type"][0] min_count = input_schema.get("_min_count") if min_count is not None and len(input) < min_count: raise UserException( "list has length {}, but the minimum allowed length is {}".format( len(input), min_count ) ) max_count = input_schema.get("_max_count") if max_count is not None and len(input) > max_count: raise UserException( "list has length {}, but the maximum allowed length is {}".format( len(input), max_count ) ) casted = [] for i, elem in enumerate(input): try: casted.append(self.populate_values(elem, elem_schema, preserve_column_refs)) except CortexException as e: e.wrap("index " + i) raise return casted if util.is_dict(input): if input_schema is None: casted = {} for key, val in input.items(): key_casted = self.populate_values(key, None, preserve_column_refs) try: val_casted = self.populate_values(val, None, preserve_column_refs) except CortexException as e: e.wrap(util.user_obj_str(key)) raise casted[key_casted] = val_casted return casted if not util.is_dict(input_schema["_type"]): raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(input_schema["_type"]), util.user_obj_str(input) ) ) min_count = input_schema.get("_min_count") if min_count is not None and len(input) < min_count: raise UserException( "map has length {}, but the minimum allowed length is {}".format( len(input), min_count ) ) max_count = input_schema.get("_max_count") if max_count is not None and len(input) > max_count: raise UserException( "map has length {}, but the maximum allowed length is {}".format( len(input), max_count ) ) is_generic_map = False if len(input_schema["_type"]) == 1: input_type_key = next(iter(input_schema["_type"].keys())) if is_compound_type(input_type_key): is_generic_map = True generic_map_key_schema = input_schema_from_type_schema(input_type_key) generic_map_value = input_schema["_type"][input_type_key] if is_generic_map: casted = {} for key, val in input.items(): key_casted = self.populate_values( key, generic_map_key_schema, preserve_column_refs ) try: val_casted = self.populate_values( val, generic_map_value, preserve_column_refs ) except CortexException as e: e.wrap(util.user_obj_str(key)) raise casted[key_casted] = val_casted return casted # fixed map casted = {} for key, val_schema in input_schema["_type"].items(): if key in input: val = input[key] else: if val_schema.get("_optional") is not True: raise UserException("missing key: " + util.user_obj_str(key)) if val_schema.get("_default") is None: continue val = val_schema["_default"] try: val_casted = self.populate_values(val, val_schema, preserve_column_refs) except CortexException as e: e.wrap(util.user_obj_str(key)) raise casted[key] = val_casted return casted if input_schema is None: return input if not util.is_str(input_schema["_type"]): raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(input_schema["_type"]), util.user_obj_str(input) ) ) return cast_compound_type(input, input_schema["_type"])