def run_games(config):
    game = Othello()
    model = ""
    x = config.iterations
    while(x != 0):
        x -= 1
        models = sorted(glob.glob(config.data.model_location+"*.h5"))
        if model == "":
            model = models[-1]
            print("Loading new model: %s" % util.getPlayerName(model))
            ai = AIPlayer(config.buffer_size, config.game.simulation_num_per_move, model=model)
        elif models[-1] != model:
            model = models[-1]
            print("Loading new model: %s" % util.getPlayerName(model))
            ai.load(model)
		
        start=time()
        for j in range(config.nb_game_in_file):
            util.print_progress_bar(j, config.nb_game_in_file, start=start)
            side = -1
            turn = 1
            while not game.game_over():
                ai.tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    ai.tau = config.game.tau_2
                t = ai.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            ai.update_buffer(game.get_winner())
            game.reset_board()
        #print("Average Game Time: ", (time()-start)/(config.nb_game_in_file))
        util.print_progress_bar(config.nb_game_in_file, config.nb_game_in_file, start=start)
        save_games(config, ai.buffer)
    t.join()
Exemple #2
0
def train(ai, config):
    loaded_files = []
    x = config.iterations
    i = len(glob.glob(config.data.model_location + "*.h5"))
    while (x != 0):
        if i > config.iter3:
            ai.update_lr(config.learning_rate3)
        elif i > config.iter2:
            ai.update_lr(config.learning_rate2)
        else:
            ai.update_lr(config.learning_rate1)
        loaded_files = load_games(ai, loaded_files, config)
        length = 0
        start = time()
        print("Iteration %04d" % i)
        progress_start = (
            i - 2
        ) * config.min_new_game_files + config.min_game_files if i > 1 else 0
        progress_end = (i -
                        1) * config.min_new_game_files + config.min_game_files
        util.print_progress_bar(0, progress_end - progress_start, start=start)
        while (len(loaded_files) < config.min_game_files
               or ((len(loaded_files) - config.min_game_files) //
                   config.min_new_game_files) + 1 < i):
            if length != len(loaded_files):
                length = len(loaded_files)
                util.print_progress_bar(length - progress_start,
                                        progress_end - progress_start,
                                        start=start)
            sleep(5)
            loaded_files = load_games(ai, loaded_files, config)
        util.print_progress_bar(progress_end - progress_start,
                                progress_end - progress_start,
                                start=start)
        print("Training for %d batches on %d samples" %
              (config.batches_per_iter, len(ai.buffer.buffer)))
        start = time()
        history = ai.train_batches(config.batch_size, config.batches_per_iter,
                                   config.verbose)
        for val in history.history.keys():
            print("%s: %0.4f" % (val, history.history[val][-1]))
        if i % config.save_model_cycles == 0:
            ai.save(config.data.model_location + "model_" + str(i) + ".h5")

        file = open(
            config.data.history_location + "hist_" + str(i) + ".pickle", 'wb')
        pickle.dump(pickle.dumps(history.history), file)
        file.close()
        print("Iteration Time: %0.2f" % (time() - start))
        x -= 1
        i += 1
Exemple #3
0
def train(ai, config):
    loaded_files = []
    x = config.iterations
    i = len(glob.glob(config.data.model_location + "*.h5"))
    loaded_files, _ = load_games(ai, loaded_files, config)
    while (x != 0):
        if i > config.iter3:
            ai.update_lr(config.learning_rate3)
        elif i > config.iter2:
            ai.update_lr(config.learning_rate2)
        else:
            ai.update_lr(config.learning_rate1)
        loaded_files, diff = load_games(ai, loaded_files, config)
        total_diff = diff
        start = time()
        print("Iteration %04d" % i)
        end = config.min_new_game_files if i > 0 else config.min_game_file
        util.print_progress_bar(0, end, start=start)
        while (total_diff < end):
            if diff > 0:
                total_diff += diff
                util.print_progress_bar(total_diff, end, start=start)
            sleep(5)
            loaded_files, diff = load_games(ai, loaded_files, config)
        util.print_progress_bar(end, end, start=start)
        print("Training for %d batches on %d samples" %
              (config.batches_per_iter, len(ai.buffer.buffer)))
        start = time()
        history = ai.train_batches(config.batch_size, config.batches_per_iter,
                                   config.verbose)
        for val in history.history.keys():
            print("%s: %0.4f" % (val, history.history[val][-1]))
        if i % config.save_model_cycles == 0:
            ai.save("%smodel_%04d.h5" % (config.data.model_location, i))

        file = open("%shist_%04d.pickle" % (config.data.history_location, i),
                    'wb')
        pickle.dump(pickle.dumps(history.history), file)
        file.close()
        print("Iteration Time: %0.2f" % (time() - start))
        x -= 1
        i += 1
def train(ai, config):
    loaded_files = []
    x = config.iterations
    i = len(glob.glob(config.data.model_location+"*.h5"))
    loaded_files, _ = load_games(ai, loaded_files, config)
    while(x != 0):
        if i > config.iter3:
            ai.update_lr(config.learning_rate3)
        elif i > config.iter2:
            ai.update_lr(config.learning_rate2)
        else:
            ai.update_lr(config.learning_rate1)
        loaded_files, diff = load_games(ai, loaded_files, config)
        total_diff = diff
        start = time()
        print("Iteration %04d"%i)
        end = config.min_new_game_files if i> 0 else config.min_game_file
        util.print_progress_bar(0, end, start=start)
        while(total_diff < end):
            if diff > 0:
                total_diff += diff
                util.print_progress_bar(total_diff, end, start=start)
            sleep(5)
            loaded_files, diff = load_games(ai, loaded_files, config)
        util.print_progress_bar(end, end, start=start)
        print("Training for %d batches on %d samples" % (config.batches_per_iter, len(ai.buffer.buffer)))
        start = time()
        history = ai.train_batches(config.batch_size, config.batches_per_iter, config.verbose)
        for val in history.history.keys():
            print("%s: %0.4f" % (val, history.history[val][-1]))
        if i % config.save_model_cycles == 0:
            ai.save("%smodel_%04d.h5" % (config.data.model_location, i))
			
        file = open("%shist_%04d.pickle" % (config.data.history_location, i), 'wb') 
        pickle.dump(pickle.dumps(history.history), file)
        file.close() 
        print("Iteration Time: %0.2f" % (time()-start))
        x -= 1
        i += 1
Exemple #5
0
def run_games(config):
    game = Othello()
    model_1 = ""
    model_2 = ""
    p1, new_1 = create_player(config.model_1, model_1, config)
    p2, new_2 = create_player(config.model_2, model_2, config)
    i = len(glob.glob(config.data.model_location+"*.h5"))
    avg_wins = []
    while True:
        i += 1
        new_1 = load_player(p1, config.model_1, model_1, config)
        new_2 = load_player(p2, config.model_2, model_2, config)
        while((config.model_1 == "newest" and new_1 == model_1) or (config.model_2 == "newest" and new_2 == model_2)):
            #print("Waiting on new model. Sleeping for 1 minute.")
            sleep(60)
            new_1 = load_player(p1, config.model_1, model_1, config)
            new_2 = load_player(p2, config.model_2, model_2, config)
        model_1 = new_1
        model_2 = new_2
        wins = 0
        losses = 0
        ties = 0
        print("Iteration %04d"%i)
        print("Playing %d games with %d simulations per move" % (config.game_num, config.game.simulation_num_per_move))
        start=time()
        for j in range(config.game_num):
            util.print_progress_bar(j, config.game_num, start=start)
            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                if config.model_1 != "random":
                    p1.tau =tau
                if config.model_2 != "random":
                    p2.tau = tau
                if j % 2 == 0:
                    if side == -1:
                        t = p1.pick_move(game, side)
                    else:
                        t = p2.pick_move(game, side)
                else:
                    if side == 1:
                        t = p1.pick_move(game, side)
                    else:
                        t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == 0:
                ties += 1
            elif j % 2 == 0 and game.get_winner() == -1:
                wins += 1
            elif j % 2 == 1 and game.get_winner() == 1:
                wins += 1
            else:
                losses += 1
            game.reset_board()
        util.print_progress_bar(config.game_num, config.game_num, start=start)
        print("%s vs %s: (%0.2f%% wins|%0.2f%% ties|%0.2f%% losses) of %d games" % (config.model_1, config.model_2, 
              100*wins/config.game_num, 100*ties/config.game_num, 100*losses/config.game_num, config.game_num))
        avg_wins.append(100*wins/config.game_num)
        if len(avg_wins) > config.rolling_avg_amount:
            avg_wins = avg_wins[-1*config.rolling_avg_amount:]
        print("Average Win Percent: %0.2f%%" % (sum(avg_wins)/float(len(avg_wins))))
        if not (config.repeat_with_new_model and (config.model_1 == "newest" or config.model_2 == "newest")):
            break
def run_games(config):
    game = Othello()
    model_1 = ""
    model_2 = ""
    p1, new_1 = create_player(config.model_1, model_1, config)
    p2, new_2 = create_player(config.model_2, model_2, config)
    if config.model_1 == "newest" or config.model_2 == "newest":
        i = len(glob.glob(config.data.model_location+"*.h5"))-1
    else:
        i = 0
    avg_wins = []
    while True:
        i += 1
        new_1 = load_player(p1, config.model_1, model_1, config)
        new_2 = load_player(p2, config.model_2, model_2, config)
        while((config.model_1 == "newest" and new_1 == model_1) or (config.model_2 == "newest" and new_2 == model_2)):
            #print("Waiting on new model. Sleeping for 1 minute.")
            sleep(60)
            new_1 = load_player(p1, config.model_1, model_1, config)
            new_2 = load_player(p2, config.model_2, model_2, config)
        model_1 = new_1
        model_2 = new_2
        wins = 0
        losses = 0
        ties = 0
        print("Iteration %04d"%i)
        print("Playing games between %s and %s" % (config.model_1, config.model_2))
        print("Playing %d games with %d simulations per move" % (config.game_num, config.game.simulation_num_per_move))
        start=time()
        for j in range(config.game_num):
            util.print_progress_bar(j, config.game_num, start=start)
            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                if config.model_1 != "random":
                    p1.tau =tau
                if config.model_2 != "random":
                    p2.tau = tau
                if j % 2 == 0:
                    if side == -1:
                        t = p1.pick_move(game, side)
                    else:
                        t = p2.pick_move(game, side)
                else:
                    if side == 1:
                        t = p1.pick_move(game, side)
                    else:
                        t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == 0:
                ties += 1
                savePerformance(config, model_1, model_2, 0, 1, 0)
            elif (j % 2 == 0 and game.get_winner() == -1) or (j % 2 == 1 and game.get_winner() == 1):
                wins += 1
                savePerformance(config, model_1, model_2, 1, 0, 0)
            else:
                losses += 1
                savePerformance(config, model_1, model_2, 0, 0, 1)
            game.reset_board()
        util.print_progress_bar(config.game_num, config.game_num, start=start)
        print("%s vs %s: (%0.2f%% wins|%0.2f%% ties|%0.2f%% losses) of %d games" % (config.model_1, config.model_2, 
              100*wins/config.game_num, 100*ties/config.game_num, 100*losses/config.game_num, config.game_num))
        avg_wins.append(100*wins/config.game_num)
        if len(avg_wins) > config.rolling_avg_amount:
            avg_wins = avg_wins[-1*config.rolling_avg_amount:]
        print("Average Win Percent: %0.2f%%" % (sum(avg_wins)/float(len(avg_wins))))
        
        if not (config.repeat_with_new_model and (config.model_1 == "newest" or config.model_2 == "newest")):
            break
Exemple #7
0
def calc_ranking(config):
    models = sorted(glob.glob(config.data.model_location + "*.h5"))
    players = []
    for i, model in enumerate(models):
        if i % config.model_skip == 0 or i == len(models):
            players.append(model)

    wtl = np.zeros((len(players), 3))
    win_matrix = np.zeros((len(players), len(players)))
    game = Othello()

    king_index = len(players) - 1
    king = AIPlayer(0,
                    config.game.simulation_num_per_move,
                    train=False,
                    model=players[king_index],
                    tau=config.game.tau_1)
    challenger = AIPlayer(0,
                          config.game.simulation_num_per_move,
                          train=False,
                          model=players[0],
                          tau=config.game.tau_1)
    total_games = (config.game_num_per_model * (len(players))) // 2
    played_games = 0
    start = time()
    print("Playing king of the hill with %d players and %d games per player" %
          (len(players), config.game_num_per_model))
    if config.game_num_per_model < len(players):
        print(
            "We suggest that you increase games per player to be greater than players"
        )
    for i in range(math.ceil(total_games / (len(players) - 1))):
        AIPlayer.clear()
        king_index = getKingIndex(win_matrix)
        if king_index == -1:
            king_index = (len(players) - 1) - i % len(players)
            msg = "No King Yet"
        else:
            msg = "King is " + os.path.basename(
                players[king_index]).split(".")[0]
        king.load(players[king_index])
        if config.print_king:
            print(msg.ljust(90))
        for j in range(len(players)):
            util.print_progress_bar(played_games, total_games, start=start)

            if j == king_index:
                continue

            challenger.load(players[j])

            if random.random() < 0.5:
                king_side = -1
                p1 = king
                p2 = challenger
            else:
                king_side = 1
                p1 = challenger
                p2 = king
            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                p1.tau = tau
                p2.tau = tau
                if side == -1:
                    t = p1.pick_move(game, side)
                else:
                    t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == king_side:
                win_matrix[king_index, j] += 1
                wtl[king_index, 0] += 1
                wtl[j, 2] += 1
            elif game.get_winner() == -1 * king_side:
                win_matrix[j, king_index] += 1
                wtl[king_index, 2] += 1
                wtl[j, 0] += 1
            else:
                win_matrix[king_index, j] += 0.5
                win_matrix[j, king_index] += 0.5
                wtl[king_index, 1] += 1
                wtl[j, 1] += 1
            game.reset_board()
            played_games += 1
            if played_games == total_games:
                break
    util.print_progress_bar(total_games, total_games, start=start)
    try:
        params = choix.ilsr_pairwise_dense(win_matrix)
        print("\nRankings:")
        for i, player in enumerate(np.argsort(params)[::-1]):
            print(
                "%d. %s (expected %d) with %0.2f rating and results of %d-%d-%d"
                % (i + 1, os.path.basename(players[player]).split(".")[0],
                   len(players) - player, params[player], wtl[player, 0],
                   wtl[player, 1], wtl[player, 2]))
        print(
            "\n(Rating Diff, Winrate) -> (0.5, 62%), (1, 73%), (2, 88%), (3, 95%), (5, 99%)"
        )
    except Exception:
        print("\n Not Enough data to calculate rankings")
        print("\nWin Matrix:")
        print(win_matrix)
        print("\nResults:")
        for player in range(win_matrix.shape[0]):
            print("%s results of %d-%d-%d" %
                  (os.path.basename(players[player]).split(".")[0],
                   wtl[player, 0], wtl[player, 1], wtl[player, 2]))
Exemple #8
0
def calc_ranking(config):
    models = sorted(glob.glob(config.data.model_location + "*.h5"))
    players = []
    for i, model in enumerate(models):
        if i % config.model_skip == 0 or i == len(models):
            players.append(model)

    wtl = np.zeros((len(players), 3))
    win_matrix = np.zeros((len(players), len(players)))
    game = Othello()

    ##give every player a random order to play games against opponents
    order = []
    for i in range(len(players)):
        nums = [x for x in range(len(players))]
        nums.remove(i)
        random.shuffle(nums)
        order.append(nums)

    p1 = AIPlayer(1, config.game.simulation_num_per_move, model=players[0])
    p2 = AIPlayer(1,
                  config.game.simulation_num_per_move,
                  model=players[order[0][0]])

    start = time()
    print(
        "Playing random round robin with %d players and %d games per player" %
        (len(players), config.game_num_per_model))
    for i in range(config.game_num_per_model // 2):
        util.print_progress_bar(i, config.game_num_per_model // 2, start=start)
        ordering = [x for x in range(len(players))]
        random.shuffle(ordering)
        for j in ordering:
            AIPlayer.clear()
            x = i
            if x >= len(order[j]):
                x %= len(order[j])
                if x == 0:
                    random.shuffle(order[j])

            p1.load(players[j])
            p2.load(players[order[j][x]])

            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                p1.tau = tau
                p2.tau = tau
                if side == -1:
                    t = p1.pick_move(game, side)
                else:
                    t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == -1:
                win_matrix[j, order[j][x]] += 1
                wtl[j, 0] += 1
                wtl[order[j][x], 2] += 1
            elif game.get_winner() == 1:
                win_matrix[order[j][x], j] += 1
                wtl[j, 2] += 1
                wtl[order[j][x], 0] += 1
            else:
                win_matrix[j, order[j][x]] += 0.5
                win_matrix[order[j][x], j] += 0.5
                wtl[j, 1] += 1
                wtl[order[j][x], 1] += 1
            game.reset_board()
    util.print_progress_bar(config.game_num_per_model // 2,
                            config.game_num_per_model // 2,
                            start=start)
    params = choix.ilsr_pairwise_dense(win_matrix)
    print("\nRankings:")
    for i, player in enumerate(np.argsort(params)[::-1]):
        print(
            "%d. %s (expected %d) with %0.2f rating and results of %d-%d-%d" %
            (i + 1, os.path.basename(players[player]), len(players) - player,
             params[player], wtl[player, 0], wtl[player, 1], wtl[player, 2]))
    print(
        "\n(Rating Diff, Winrate) -> (0.5, 62%), (1, 73%), (2, 88%), (3, 95%), (5, 99%)"
    )
def calc_ranking(config):
    models = sorted(glob.glob(config.data.model_location+"*.h5"))
    players = []
    for i, model in enumerate(models):
        if i % config.model_skip == 0 or i == len(models):
            players.append(model)
    
    wtl = np.zeros((len(players), len(players), 3))
    win_matrix = np.zeros((len(players),len(players)))
    game = Othello()
    
    challenger1 = AIPlayer(0, config.game.simulation_num_per_move, train=False, model=players[-1], tau=config.game.tau_1)
    challenger2 = AIPlayer(0, config.game.simulation_num_per_move, train=False, model=players[0], tau=config.game.tau_1)
    total_games = (config.game_num_per_model * (len(players)))//2
    played_games = 0
    finished = False
    start = time()
    print("Ranking with %d players and %d games per player" % (len(players), config.game_num_per_model))
    if config.game_num_per_model < len(players):
        print("We suggest that you increase games per player to be greater than players")
        
    for i in itertools.count():
        ranks = getRankings(win_matrix)

        if len(ranks) == 0:
            msg = "No Clear Best Yet"
        else:
            msg = "Current Best is "+util.getPlayerName(players[ranks[-1]])   
        if config.print_best:
            print(msg.ljust(90))
        for j in range(len(players)):
            util.print_progress_bar(played_games, total_games, start=start)
            
            challenger1_index = getLeastPlayed(win_matrix, j)
            
            AIPlayer.clear()
            challenger1.load(players[challenger1_index])
            challenger2.load(players[j])
            
            if random.random() < 0.5:
                challenger1_side = -1
                p1 = challenger1
                p2 = challenger2
            else:
                challenger1_side = 1
                p1 = challenger2
                p2 = challenger1
            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                p1.tau = tau
                p2.tau = tau
                if side == -1:
                    t = p1.pick_move(game, side)
                else:
                    t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == challenger1_side:
                win_matrix[challenger1_index,j] += 1
                wtl[challenger1_index, j,0] += 1
            elif game.get_winner() == -1*challenger1_side:
                win_matrix[j, challenger1_index] += 1
                wtl[challenger1_index, j,2] += 1
            else:
                win_matrix[challenger1_index,j] += 0.5
                win_matrix[j, challenger1_index] += 0.5
                wtl[challenger1_index, j, 1] += 1
            game.reset_board()
            played_games += 1
            if played_games >= total_games:
                finished = True
                break
        saveWTL(config, players, wtl)
        wtl = np.zeros((len(players), len(players), 3))
        if finished:
            break
    util.print_progress_bar(total_games, total_games, start=start) 
    
    print("\n",[util.getPlayerName(player) for player in players])
    print("\nWin Matrix(row beat column):")
    print(win_matrix)
    try:
        with np.errstate(divide='ignore', invalid='ignore'):
            params = choix.ilsr_pairwise_dense(win_matrix)
        print("\nRankings:")
        for i, player in enumerate(np.argsort(params)[::-1]):
            print("%d. %s (expected %d) with %0.2f rating"% 
                  (i+1, util.getPlayerName(players[player]), len(players)-player, params[player]))
        print("\n(Rating Diff, Winrate) -> (0.5, 62%), (1, 73%), (2, 88%), (3, 95%), (5, 99%)")
    except Exception:
        print("\nNot Enough data to calculate rankings")
def calc_ranking(config):
    models = sorted(glob.glob(config.data.model_location + "*.h5"))
    players = []
    for i, model in enumerate(models):
        if i % config.model_skip == 0 or i == len(models):
            players.append(model)

    wtl = np.zeros((len(players), len(players), 3))
    win_matrix = np.zeros((len(players), len(players)))
    game = Othello()

    challenger1 = AIPlayer(0,
                           config.game.simulation_num_per_move,
                           train=False,
                           model=players[-1],
                           tau=config.game.tau_1)
    challenger2 = AIPlayer(0,
                           config.game.simulation_num_per_move,
                           train=False,
                           model=players[0],
                           tau=config.game.tau_1)
    total_games = (config.game_num_per_model * (len(players))) // 2
    played_games = 0
    finished = False
    start = time()
    print("Ranking with %d players and %d games per player" %
          (len(players), config.game_num_per_model))
    if config.game_num_per_model < len(players):
        print(
            "We suggest that you increase games per player to be greater than players"
        )

    for i in itertools.count():
        ranks = getRankings(win_matrix)

        if len(ranks) == 0:
            msg = "No Clear Best Yet"
        else:
            msg = "Current Best is " + util.getPlayerName(players[ranks[-1]])
        if config.print_best:
            print(msg.ljust(90))
        for j in range(len(players)):
            util.print_progress_bar(played_games, total_games, start=start)

            challenger1_index = getLeastPlayed(win_matrix, j)

            AIPlayer.clear()
            challenger1.load(players[challenger1_index])
            challenger2.load(players[j])

            if random.random() < 0.5:
                challenger1_side = -1
                p1 = challenger1
                p2 = challenger2
            else:
                challenger1_side = 1
                p1 = challenger2
                p2 = challenger1
            side = -1
            turn = 1
            while not game.game_over():
                tau = config.game.tau_1
                if config.game.tau_swap < turn:
                    tau = config.game.tau_2
                p1.tau = tau
                p2.tau = tau
                if side == -1:
                    t = p1.pick_move(game, side)
                else:
                    t = p2.pick_move(game, side)
                game.play_move(t[0], t[1], side)
                side *= -1
                turn += 1
            if game.get_winner() == challenger1_side:
                win_matrix[challenger1_index, j] += 1
                wtl[challenger1_index, j, 0] += 1
            elif game.get_winner() == -1 * challenger1_side:
                win_matrix[j, challenger1_index] += 1
                wtl[challenger1_index, j, 2] += 1
            else:
                win_matrix[challenger1_index, j] += 0.5
                win_matrix[j, challenger1_index] += 0.5
                wtl[challenger1_index, j, 1] += 1
            game.reset_board()
            played_games += 1
            if played_games >= total_games:
                finished = True
                break
        saveWTL(config, players, wtl)
        wtl = np.zeros((len(players), len(players), 3))
        if finished:
            break
    util.print_progress_bar(total_games, total_games, start=start)

    print("\n", [util.getPlayerName(player) for player in players])
    print("\nWin Matrix(row beat column):")
    print(win_matrix)
    try:
        with np.errstate(divide='ignore', invalid='ignore'):
            params = choix.ilsr_pairwise_dense(win_matrix)
        print("\nRankings:")
        for i, player in enumerate(np.argsort(params)[::-1]):
            print("%d. %s (expected %d) with %0.2f rating" %
                  (i + 1, util.getPlayerName(
                      players[player]), len(players) - player, params[player]))
        print(
            "\n(Rating Diff, Winrate) -> (0.5, 62%), (1, 73%), (2, 88%), (3, 95%), (5, 99%)"
        )
    except Exception:
        print("\nNot Enough data to calculate rankings")