Exemple #1
0
def transform_datetime(df: pd.DataFrame, config: Config):
    date_parts = ["year", "weekday", "month", "day", "hour"]

    if "date_columns" not in config:
        config["date_columns"] = {}

        for c in [c for c in df if c.startswith("datetime_")]:
            config["date_columns"][c] = []
            for part in date_parts:
                part_col = c + "_" + part
                df[part_col] = getattr(df[c].dt, part).astype(np.uint16 if part == "year" else np.uint8).values

                if not (df[part_col] != df[part_col].iloc[0]).any():
                    Log.print(part_col + " is constant")
                    df.drop(part_col, axis=1, inplace=True)
                else:
                    config["date_columns"][c].append(part)

            df.drop(c, axis=1, inplace=True)
    else:
        for c, parts in config["date_columns"].items():
            for part in parts:
                part_col = c + "_" + part
                df[part_col] = getattr(df[c].dt, part)
            df.drop(c, axis=1, inplace=True)
Exemple #2
0
def transform_categorical(df: pd.DataFrame, config: Config):
    if "categorical_columns" not in config:
        config["categorical_columns"] = []

        # https://www.kaggle.com/ogrellier/python-target-encoding-for-categorical-features
        prior = config["categorical_prior"] = df["target"].mean()
        min_samples_leaf = 10
        smoothing = 5

        config["categorical_columns_string"] = {}
        for c in [c for c in df if c.startswith("string_")]:
            Log.print(c)
            config["categorical_columns"].append(c)

            averages = df[[c, "target"]].groupby(c)["target"].agg(["mean", "count"])
            smooth = 1 / (1 + np.exp(-(averages["count"] - min_samples_leaf) / smoothing))
            averages["target"] = prior * (1 - smooth) + averages["mean"] * smooth
            config["categorical_columns_string"][c] = averages["target"].to_dict()

        config["categorical_columns_id"] = {}
        for c in [c for c in df if c.startswith("id_")]:
            Log.print(c)
            config["categorical_columns"].append(c)

            if df[c].dtype == str or df[c].dtype == object:
                config["categorical_columns_id"][c] = {v: i for i, v in enumerate(df[c].unique())}

    for c, values in config["categorical_columns_string"].items():
        df.loc[:, c] = df[c].apply(lambda x: values[x] if x in values else config["categorical_prior"])

    for c, values in config["categorical_columns_id"].items():
        df.loc[:, c] = df[c].apply(lambda x: values[x] if x in values else -1)
Exemple #3
0
def train_lightgbm(X: pd.DataFrame, y: pd.Series, config: Config):
    params = {
        "objective": "regression" if config.is_regression() else "binary",
        "metric": "rmse" if config.is_regression() else "auc",
        "verbosity": -1,
        "seed": 1,
    }

    X_sample, y_sample = data_sample(X, y, config, nrows=20000)
    hyperparams = hyperopt_lightgbm(X_sample, y_sample, params, config)

    X_train, X_val, y_train, y_val = data_split(X, y, config)

    config["model"] = lgb.train(
        {**params, **hyperparams},
        lgb.Dataset(X_train, label=y_train),
        5000,
        lgb.Dataset(X_val, label=y_val),
        early_stopping_rounds=100,
        verbose_eval=100,
    )
    config.save()

    try:
        with time_limit(config.time_left() - 10):
            config["model"] = lgb.train(
                {**params, **hyperparams},
                lgb.Dataset(X, label=y),
                int(1.2 * config["model"].best_iteration),
            )
    except TimeoutException:
        Log.print("Timed out!")
Exemple #4
0
def drop_constant_columns(df: pd.DataFrame, config: Config):
    if "constant_columns" not in config:
        config["constant_columns"] = [c for c in df if c.startswith("number_") and not (df[c] != df[c].iloc[0]).any()]
        Log.print("Constant columns: {}".format(config["constant_columns"]))

    if len(config["constant_columns"]) > 0:
        df.drop(config["constant_columns"], axis=1, inplace=True)
Exemple #5
0
def validate_dataset(alias: str, mode: str, train_limit: int) -> np.float64:
    Log.print(alias)

    automl = AutoML("models/check_{}".format(alias))

    automl.config["time_limit"] = train_limit
    automl.train("data/check_{}/train.csv".format(alias), mode)

    automl.config["time_limit"] = 300
    automl.config["start_time"] = time.time()
    _, score = automl.predict("data/check_{}/test.csv".format(alias), "predictions/check_{}.csv".format(alias))

    return score
Exemple #6
0
def subsample(df: pd.DataFrame, config: Config, max_size_mb: float=2.0):
    if config.is_train():
        df_size_mb = df.memory_usage(deep=True).sum() / 1024 / 1024
        if df_size_mb > max_size_mb:
            mem_per_row = df_size_mb / len(df)
            sample_rows = int(max_size_mb / mem_per_row)

            Log.print("Size limit exceeded: {:0.2f} Mb. Dataset rows: {}. Subsample to {} rows.".format(df_size_mb, len(df), sample_rows))
            _, df_drop = train_test_split(df, train_size=sample_rows, random_state=1)
            df.drop(df_drop.index, inplace=True)

            config["nrows"] = sample_rows
        else:
            config["nrows"] = len(df)
Exemple #7
0
def to_int8(df: pd.DataFrame, config: Config):
    if "int8_columns" not in config:
        config["int8_columns"] = []
        vals = [-1, 0, 1]

        for c in [c for c in df if c.startswith("number_")]:
            if (~df[c].isin(vals)).any():
                continue
            config["int8_columns"].append(c)

        Log.print("Num columns: {}".format(len(config["int8_columns"])))

    if len(config["int8_columns"]) > 0:
        df.loc[:, config["int8_columns"]] = df.loc[:, config["int8_columns"]].astype(np.int8)
Exemple #8
0
    def objective(hyperparams):
        if config.is_time_fraction_limit():
            score = np.inf if config.is_regression() else 0
            return {'loss': score, 'status': STATUS_OK}

        model = lgb.train({**params, **hyperparams}, train_data, 300, valid_data,
                          early_stopping_rounds=100, verbose_eval=False)

        score = model.best_score["valid_0"][params["metric"]]
        Log.print(score)
        if config.is_classification():
            score = -score

        return {'loss': score, 'status': STATUS_OK}
Exemple #9
0
def hyperopt_lightgbm(X: pd.DataFrame, y: pd.Series, params: Dict, config: Config):
    X_train, X_val, y_train, y_val = data_split(X, y, config, test_size=0.5)
    train_data = lgb.Dataset(X_train, label=y_train)
    valid_data = lgb.Dataset(X_val, label=y_val)

    space = {
        "learning_rate": hp.choice("learning_rate", np.arange(0.01, 0.05, 0.01)),
        "boost_from_average": hp.choice("boost_from_average", [True, False]),
        "is_unbalance": hp.choice("is_unbalance", [True, False]),
        "zero_as_missing": hp.choice("zero_as_missing", [True, False]),
        "max_depth": hp.choice("max_depth", [-1, 2, 3, 4, 5, 6, 7]),
        "num_leaves": hp.choice("num_leaves", [11, 31, 51, 101, 151, 201]),
        "feature_fraction": hp.choice("feature_fraction", np.arange(0.5, 1.0, 0.1)),
        "bagging_fraction": hp.choice("bagging_fraction", np.arange(0.5, 1.0, 0.1)),
        "bagging_freq": hp.choice("bagging_freq", [1, 3, 5, 10, 20, 50]),
        "reg_alpha": hp.uniform("reg_alpha", 0, 10),
        "reg_lambda": hp.uniform("reg_lambda", 0, 10),
        "min_child_weight": hp.uniform("min_child_weight", 0, 10),
    }

    config.limit_time_fraction(0.15)

    def objective(hyperparams):
        if config.is_time_fraction_limit():
            score = np.inf if config.is_regression() else 0
            return {'loss': score, 'status': STATUS_OK}

        model = lgb.train({**params, **hyperparams}, train_data, 300, valid_data,
                          early_stopping_rounds=100, verbose_eval=False)

        score = model.best_score["valid_0"][params["metric"]]
        Log.print(score)
        if config.is_classification():
            score = -score

        return {'loss': score, 'status': STATUS_OK}

    trials = Trials()
    best = hyperopt.fmin(fn=objective, space=space, trials=trials, algo=tpe.suggest, max_evals=100, verbose=1,
                         rstate= np.random.RandomState(1))

    hyperparams = space_eval(space, best)
    Log.print("{:0.4f} {}".format(trials.best_trial['result']['loss'], hyperparams))
    return hyperparams
Exemple #10
0
def feature_selection(df: pd.DataFrame, config: Config):
    if config.is_train():
        df_size_mb = df.memory_usage(deep=True).sum() / 1024 / 1024
        if df_size_mb < 2 * 1024:
            return

        selected_columns = []
        config_sample = copy.deepcopy(config)
        config.limit_time_fraction(0.1)
        for i in range(20):
            if config.is_time_fraction_limit():
                break

            df_sample = df.sample(min(3000, len(df)), random_state=i).copy()
            transform(df_sample, config_sample)
            y = df_sample["target"]
            X = df_sample.drop("target", axis=1)

            if len(selected_columns) > 0:
                X = X.drop(selected_columns, axis=1)

            if len(X.columns) > 0:
                selected_columns += select_features(X, y, config["mode"])
            else:
                break

        Log.print("Selected columns: {}".format(selected_columns))

        drop_number_columns = [c for c in df if c.startswith("number_") and c not in selected_columns]
        if len(drop_number_columns) > 0:
            config["drop_number_columns"] = drop_number_columns

        config["date_columns"] = {}
        for c in [c for c in selected_columns if c.startswith("datetime_")]:
            d = c.split("_")
            date_col = d[0] + "_" + d[1]
            date_part = d[2]

            if date_col not in config["date_columns"]:
                config["date_columns"][date_col] = []

            config["date_columns"][date_col].append(date_part)

        drop_datetime_columns = [c for c in df if c.startswith("datetime_") and c not in config["date_columns"]]
        if len(drop_datetime_columns) > 0:
            config["drop_datetime_columns"] = drop_datetime_columns

    if "drop_number_columns" in config:
        Log.print("Drop number columns: {}".format(config["drop_number_columns"]))
        df.drop(config["drop_number_columns"], axis=1, inplace=True)

    if "drop_datetime_columns" in config:
        Log.print("Drop datetime columns: {}".format(config["drop_datetime_columns"]))
        df.drop(config["drop_datetime_columns"], axis=1, inplace=True)
            pre="sz"
        else:
            pre="sh"
        symbol=pre+strNum
        formatDate=time.strftime("%Y%m%d",time.strptime(date,"%Y%m%d"))
        url=detailSource.get("qq2") %(symbol, formatDate)
        return url

def handleDetail(code,date,parser , conf):
    url=getUrl(num = code,date = date,conf=conf)
    fetchData=Fetcher.fetch(url)
    parseData=parser.parse(fetchData)
    path = Dumper.getPath(code = code , date = date ,dataType = "detail" ,conf = conf)
    Dumper.dump(path = path,data = parseData)
    return True

if __name__ == '__main__':
    import doctest
    SYS_HOME=os.path.join(__dir__,"..","..","..")
    sys.path.insert(0,SYS_HOME)
    from lib.util import Conf,Log
    conf=Conf.load(\
            os.path.join(SYS_HOME,"conf","stock.yaml"),
            os.path.join(SYS_HOME,"conf","downloader.yaml"))
    Fetcher.DEBUG=True
    logPath=os.path.join(SYS_HOME , conf.get("LOG_PATH",""))
    Log.set(logPath = logPath , printLevel=logging.DEBUG)
    conf["SYS_HOME"]=SYS_HOME
    conf["DEBUG"]=True
    doctest.testmod()
Exemple #12
0
"""
"""
init 
"""
import os,sys,logging
from lib.stk.element import Stock,Date,Dumper
from lib.util import Log,Conf
__dir__ = os.path.realpath(os.path.dirname(__file__))
APP_HOME=os.path.join(__dir__,"..")
SYS_HOME=os.path.join(APP_HOME,"..")
SYS_LIB_HOME=os.path.join(SYS_HOME,"lib")
sys.path.insert(0,SYS_HOME)
conf=Conf.load(os.path.join(SYS_HOME,"conf","stock.yaml"),os.path.join(SYS_HOME,"conf","downloader.yaml"))
conf["SYS_HOME"] = SYS_HOME
logPath=os.path.join(SYS_HOME , conf.get("LOG_PATH",""))
Log.set(logPath = logPath,printLevel = logging.ERROR)
stock = Stock(conf)
###################### TRAIN
"""
训练 整体 statistics 和 strategic likelihood
用 element/statistics来载入这些数据
"""
TRAIN_DATA_PATH = os.path.join(SYS_HOME,"data","train")

#train all days data and gaussian data
from lib.stk.statistics.Gaussian import Gaussian
subject = [[-0.1,-0.09],[-0.09,-0.08],[-0.08,-0.07],[-0.07,-0.06],[-0.06,-0.05],[-0.05,-0.04],[-0.04,-0.03],[-0.03,-0.02],[-0.02,-0.01],[-0.01,0],[0,0.01],[0.01,0.02],[0.02,0.03],[0.03,0.04],[0.04,0.05],[0.05,0.06],[0.06,0.07],[0.07,0.08],[0.08,0.09],[0.09,0.1]]


# strategic likelihood
from lib.stk.element.Strategic import Strategic
Exemple #13
0
def preview_df(train_csv: str, config: Config, nrows: int = 3000):
    num_rows = sum(1 for line in open(train_csv)) - 1
    Log.print("Rows in train: {}".format(num_rows))

    df = pd.read_csv(train_csv,
                     encoding="utf-8",
                     low_memory=False,
                     nrows=nrows)
    mem_per_row = df.memory_usage(deep=True).sum() / nrows
    Log.print("Memory per row: {:0.2f} Kb".format(mem_per_row / 1024))

    df_size = (num_rows * mem_per_row) / 1024 / 1024
    Log.print("Approximate dataset size: {:0.2f} Mb".format(df_size))

    config["parse_dates"] = []
    config["dtype"] = {
        "line_id": int,
    }

    counters = {
        "id": 0,
        "number": 0,
        "string": 0,
        "datetime": 0,
    }

    for c in df:
        if c.startswith("number_"):
            counters["number"] += 1
        elif c.startswith("string_"):
            counters["string"] += 1
            config["dtype"][c] = str
        elif c.startswith("datetime_"):
            counters["datetime"] += 1
            config["dtype"][c] = str
            config["parse_dates"].append(c)
        elif c.startswith("id_"):
            counters["id"] += 1

    Log.print("Number columns: {}".format(counters["number"]))
    Log.print("String columns: {}".format(counters["string"]))
    Log.print("Datetime columns: {}".format(counters["datetime"]))

    config["counters"] = counters
Exemple #14
0
def time_series_detect(df: pd.DataFrame, config: Config):
    sample_size = 10000
    model_params = {
        "objective": "regression" if config["mode"] == "regression" else "binary",
        "metric": "rmse" if config["mode"] == "regression" else "auc",
        "learning_rate": 0.01,
        "verbosity": -1,
        "seed": 1,
        "max_depth": -1,
    }

    if config.is_train():
        datetime_columns = [c for c in df if c.startswith("datetime_")]
        id_columns = [c for c in df if c.startswith("id_")]

        sort_columns = []
        for dc in datetime_columns:
            sort_columns.append([dc])
            for ic in id_columns:
                sort_columns.append([ic, dc])
        else:
            for ic in id_columns:
                sort_columns.append([ic])

        scores = []
        config.limit_time_fraction(0.1)
        for sc in sort_columns:
            if config.is_time_fraction_limit():
                break

            Log.silent(True)
            df.sort_values(sc, inplace=True)

            config_sample = copy.deepcopy(config)
            df_sample = df.iloc[-sample_size:].copy() if len(df) > sample_size else df.copy()
            df_sample = df_sample[[c for c in df_sample if c.startswith("number_") or c == "target" or c in sc]]
            shift_columns(df_sample, group= sc[0] if len(sc) > 1 else None)
            transform(df_sample, config_sample)

            y = df_sample["target"]
            X = df_sample.drop("target", axis=1)
            X_train, X_test, y_train, y_test = ts_split(X, y, test_size=0.5)

            model_sorted = lgb.train(model_params, lgb.Dataset(X_train, label=y_train), 3000, lgb.Dataset(X_test, label=y_test),
                              early_stopping_rounds=100, verbose_eval=False)
            score_sorted = model_sorted.best_score["valid_0"][model_params["metric"]]

            sampled_columns = [c for c in X if "_shift" not in c]
            model_sampled = lgb.train(model_params, lgb.Dataset(X_train[sampled_columns], label=y_train), 3000, lgb.Dataset(X_test[sampled_columns], label=y_test),
                              early_stopping_rounds=100, verbose_eval=False)
            score_sampled = model_sampled.best_score["valid_0"][model_params["metric"]]

            if config.is_classification():
                score_sorted = -score_sorted
                score_sampled = -score_sampled

            Log.silent(False)
            Log.print("Sort: {}. Score sorted: {:0.4f}. Score sampled: {:0.4f}".format(sc, score_sorted, score_sampled))
            score_ratio = score_sampled / score_sorted if config.is_regression() else abs(score_sorted / score_sampled)
            if score_ratio >= 1.03:
                Log.print(score_ratio)
                scores.append((score_sorted, sc))

        if len(scores) > 0:
            scores = sorted(scores, key=lambda x: x[0])
            Log.print("Scores: {}".format(scores))
            config["sort_values"] = scores[0][1]
            df.sort_values(config["sort_values"], inplace=True)

            config_sample = copy.deepcopy(config)
            df_sample = df.iloc[-sample_size:].copy() if len(df) > sample_size else df.copy()
            shift_columns(df_sample, group=config["sort_values"][0] if len(config["sort_values"]) > 1 else None)
            transform(df_sample, config_sample)

            y = df_sample["target"]
            X = df_sample.drop("target", axis=1)

            model = lgb.train(model_params, lgb.Dataset(X, label=y), 1000)
            fi = pd.Series(model.feature_importance(importance_type="gain"), index=X.columns)
            fi = fi[fi > 0].sort_values()
            selected_columns = fi[fi >= fi.quantile(0.75)].index.tolist()

            selected_shift_columns = [c.replace("_shift", "") for c in selected_columns if "_shift" in c]
            if len(selected_shift_columns) > 0:
                Log.print("Shift columns: {}".format(selected_shift_columns))
                config["shift_columns"] = selected_shift_columns

    if "shift_columns" in config:
        shift_columns(df, group=config["sort_values"][0] if len(config["sort_values"]) > 1 else None, number_columns=config["shift_columns"])
Exemple #15
0
    automl.train("data/check_{}/train.csv".format(alias), mode)

    automl.config["time_limit"] = 300
    automl.config["start_time"] = time.time()
    _, score = automl.predict("data/check_{}/test.csv".format(alias), "predictions/check_{}.csv".format(alias))

    return score


if __name__ == '__main__':
    scores = {
        "dataset": [],
        "score": [],
        "time": [],
    }

    for i, mode, train_limit in DATASETS:
        alias = "{}_{}".format(i, mode[0])

        start_time = time.time()
        score = validate_dataset(alias, mode, train_limit)
        end_time = time.time()

        scores["dataset"].append(alias)
        scores["score"].append(score)
        scores["time"].append(end_time - start_time)

    scores = pd.DataFrame(scores)
    scores.to_csv("scores/{}.csv".format(int(time.time())))
    Log.print(scores, nesting=False)
Exemple #16
0
        logging.error("No %s commands." % cmd_name)
    else:
        cmd = imp.load_module(cmd_name, fp, pathname, description)
        cmd.run(conf = conf)
    finally:
        if fp:
            fp.close()

if __name__=="__main__" :
    if sys.argv[1:]:
        conf=Conf.load(\
            os.path.join(SYS_HOME,"conf","stock.yaml"),
            os.path.join(SYS_HOME,"conf","downloader.yaml"))
        conf["SYS_HOME"]=SYS_HOME
        conf.update(parseArgs(conf))
        Log.set(os.path.join(SYS_HOME,conf.get("LOG_PATH")))
        action=conf.get("action","run")
        dates=conf.get("dates")   #如果指定多个日期,则按顺序启动实例一个一个运行
        stockCache = {} #@todo add stockCache
        if not dates  or len(dates)==0:
            conf['date']=Date.getDate()
            execute(cmd_name = action,conf=conf)
        elif len(dates)>=1:
            for sDate in dates:
                conf["date"]=sDate
                if stockCache:
                    conf['stock']=stockCache
                execute(cmd_name = action,conf=conf)
    else:
        print __doc__
                m = item
            else:
                m = (item - expection)/(deviation *(2 **0.5))
            
            #res = 0.5 * (1 + norm.cdf(m))
            res = 0.5 * (1 + special.erf(m))
            if preValue !=None :
                ret = res - preValue 
            else:
                preValue = res
                ret = res
        return ret

if __name__ == '__main__':
    import doctest
    SYS_HOME=os.path.join(LIB_HOME,"..","..")
    sys.path.insert(0,SYS_HOME)
    from lib.util import Log,Conf
    conf=Conf.load(\
            os.path.join(SYS_HOME,"conf","stock.yaml"),
            os.path.join(SYS_HOME,"conf","downloader.yaml")
        )
    conf["SYS_HOME"] = SYS_HOME
    logPath=os.path.join(SYS_HOME , conf.get("LOG_PATH",""))
    Log.set(logPath = logPath)

    gaussian = Gaussian()
    stock = Stock(conf)
    stock.date = '20111024'
    doctest.testmod()
Exemple #18
0
def validate(preds: pd.DataFrame, target_csv: str, mode: str) -> np.float64:
    df = pd.merge(preds, pd.read_csv(target_csv), on="line_id", left_index=True)
    score = roc_auc_score(df.target.values, df.prediction.values) if mode == "classification" else \
        np.sqrt(mean_squared_error(df.target.values, df.prediction.values))
    Log.print("Score: {:0.4f}".format(score))
    return score