Exemple #1
0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import six
import yaml
import copy
import numpy as np
from lib.utils.collections import AttrDict
from lib.utils.misc import get_run_name
from ast import literal_eval

__C = AttrDict()
# Consumers can get config by:
cfg = __C

# Root directory of project
__C.ROOT_DIR = os.path.dirname(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# ---------------------------------------------------------------------------- #
# Data configurations
# ---------------------------------------------------------------------------- #
__C.DATASET = AttrDict()
__C.DATASET.NAME = 'nyu'
__C.DATASET.RGB_PIXEL_MEANS = (0.485, 0.456, 0.406
                               )  # (102.9801, 115.9465, 122.7717)
__C.DATASET.RGB_PIXEL_VARS = (0.229, 0.224, 0.225)  # (1, 1, 1)
# Scale the depth map
Exemple #2
0
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import six
import os
import os.path as osp
import copy
from ast import literal_eval

import numpy as np
import yaml

from lib.utils.collections import AttrDict

__C = AttrDict()
# Consumers can get config by:
#   from fast_rcnn_config import cfg
cfg = __C

__C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..'))

# Random note: avoid using '.ON' as a config key since yaml converts it to True;
# prefer 'ENABLED' instead
# ---------------------------------------------------------------------------- #
# DATASET Options
# ---------------------------------------------------------------------------- #
__C.DATASET = AttrDict()

__C.DATASET.SELF_SPLIT_DATASET = False
Exemple #3
0
def merge_cfg_from_file(cfg_filename):
    """Load a yaml config file and merge it into the global config."""
    with open(cfg_filename, 'r') as f:
        yaml_cfg = AttrDict(yaml.load(f))
    _merge_a_into_b(yaml_cfg, __C)
Exemple #4
0
import os
import os.path as osp
import copy
from ast import literal_eval

import numpy as np
from packaging import version
import torch
import torch.nn as nn
from torch.nn import init
import yaml

#import nn as mynn
from lib.utils.collections import AttrDict

__C = AttrDict()
# Consumers can get config by:
#   from fast_rcnn_config import cfg
cfg = __C


# Random note: avoid using '.ON' as a config key since yaml converts it to True;
# prefer 'ENABLED' instead

# ---------------------------------------------------------------------------- #
# Training options
# ---------------------------------------------------------------------------- #
__C.TRAIN = AttrDict()

# Datasets to train on
# Available dataset list: datasets.dataset_catalog.DATASETS.keys()