Exemple #1
0
                    type=str,
                    help='datatset stroage directory',
                    default='/data/datasets')
args = vars(parser.parse_args())
print(args)

modeldir = get_modeldir_ens(args['ind'], args['model_arch'])
ensemble_num = args['model_num']

# ----- load dataset -----
transform = get_transform(args['ind'])
std = get_std(args['ind'])

ind_test_loader = get_dataloader(args['ind'],
                                 transform,
                                 "test",
                                 dataroot=args['dataroot'],
                                 batch_size=args['batch_size'])
ood_test_loader = get_dataloader(args['ood'],
                                 transform,
                                 "test",
                                 dataroot=args['dataroot'],
                                 batch_size=args['batch_size'])
ind_dataloader_val_for_train, ind_dataloader_val_for_test, ind_dataloader_test = split_dataloader(
    args['ind'], ind_test_loader, [500, 500, -1])
ood_dataloader_val_for_train, ood_dataloader_val_for_test, ood_dataloader_test = split_dataloader(
    args['ood'], ood_test_loader, [500, 500, -1])

# ----- Calculating and averaging maximum softmax probabilities -----
from lib.inference.ODIN import get_ODIN_score
best_temperature = 1.0
args = vars(parser.parse_args())
print(args)

# ----- load pre-trained model -----
model = get_model(args['ind'], args['model_arch'])

# ----- load dataset -----
transform = get_transform(args['ind'])
std = get_std(args['ind'])
img_size = get_img_size(args['ind'])
inp_channel = get_inp_channel(args['ind'])
batch_size = args['batch_size']  # recommend: 64 for ImageNet, CelebA, MS1M

ind_train_loader = get_dataloader(args['ind'],
                                  transform,
                                  "train",
                                  dataroot=args['dataroot'],
                                  batch_size=batch_size)
ind_test_loader = get_dataloader(args['ind'],
                                 transform,
                                 "test",
                                 dataroot=args['dataroot'],
                                 batch_size=batch_size)
ood_test_loader = get_dataloader(args['ood'],
                                 transform,
                                 "test",
                                 dataroot=args['dataroot'],
                                 batch_size=batch_size)
ind_dataloader_val_for_train, ind_dataloader_val_for_test, ind_dataloader_test = split_dataloader(
    args['ind'], ind_test_loader, [500, 500, -1], random=True)
ood_dataloader_val_for_train, ood_dataloader_val_for_test, ood_dataloader_test = split_dataloader(