Exemple #1
0
    def evaluate(self, output, batch):
        kpt_2d = output['kpt_2d'][0].detach().cpu().numpy()

        img_id = int(batch['img_id'][0])
        anno = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))[0]
        kpt_3d = np.concatenate([anno['fps_3d'], [anno['center_3d']]], axis=0)
        K = np.array(anno['K'])

        pose_gt = np.array(anno['pose'])
        if cfg.test.un_pnp:
            var = output['var'][0].detach().cpu().numpy()
            pose_pred = self.uncertainty_pnp(kpt_3d, kpt_2d, var, K)
        else:
            pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d, K)

        if cfg.test.icp:
            pose_pred_icp = self.icp_refine(pose_pred.copy(), anno, output, K)
            if cfg.cls_type in ['eggbox', 'glue']:
                self.add_metric(pose_pred_icp, pose_gt, syn=True, icp=True)
            else:
                self.add_metric(pose_pred_icp, pose_gt, icp=True)
            self.projection_2d(pose_pred_icp, pose_gt, K, icp=True)
            self.cm_degree_5_metric(pose_pred_icp, pose_gt, icp=True)

        if cfg.cls_type in ['eggbox', 'glue']:
            self.add_metric(pose_pred, pose_gt, syn=True)
        else:
            self.add_metric(pose_pred, pose_gt)
        self.projection_2d(pose_pred, pose_gt, K)
        self.cm_degree_5_metric(pose_pred, pose_gt)
        self.mask_iou(output, batch)
Exemple #2
0
    def evaluate(self, output, batch):
        img_id = int(batch['meta']['img_id'])
        self.img_ids.append(img_id)
        img_data = self.coco.loadImgs(int(img_id))[0]
        depth_path = img_data['depth_path']

        ann_ids = self.coco.getAnnIds(imgIds=img_id, catIds=self.obj_id)
        annos = self.coco.loadAnns(ann_ids)
        kpt_3d = np.concatenate([annos[0]['fps_3d'], [annos[0]['center_3d']]],
                                axis=0)
        corner_3d = np.array(annos[0]['corner_3d'])
        K = np.array(annos[0]['K'])
        pose_gt = [np.array(anno['pose']) for anno in annos]

        kpt_2d = output['kpt_2d'].detach().cpu().numpy()
        centers = batch['meta']['center']
        scales = batch['meta']['scale']
        boxes = batch['meta']['box']
        h, w = batch['inp'].size(2), batch['inp'].size(3)

        pose_preds = []
        pose_preds_icp = []
        for i in range(len(centers)):
            center = centers[i].detach().cpu().numpy()
            scale = scales[i].detach().cpu().numpy()
            kpt_2d_ = kpt_2d[i]
            trans_inv = data_utils.get_affine_transform(center[0],
                                                        scale[0],
                                                        0, [w, h],
                                                        inv=1)
            kpt_2d_ = data_utils.affine_transform(kpt_2d_, trans_inv)
            if cfg.test.un_pnp:
                var = output['var'][i].detach().cpu().numpy()
                pose_pred = self.uncertainty_pnp(kpt_3d, kpt_2d_, var, K)
            else:
                pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d_, K)
            pose_preds.append(pose_pred)

            if cfg.test.icp:
                seg = torch.argmax(output['seg'][i],
                                   dim=0).detach().cpu().numpy()
                seg = seg.astype(np.uint8)
                seg = cv2.warpAffine(seg,
                                     trans_inv, (self.width, self.height),
                                     flags=cv2.INTER_NEAREST)
                pose_pred_icp = self.icp_refine(pose_pred.copy(), depth_path,
                                                seg.copy(), K.copy())
                pose_preds_icp.append(pose_pred_icp)

        if cfg.test.icp:
            self.icp_adi.append(self.adi_metric(pose_preds_icp, pose_gt))
            self.icp_cmd5.append(
                self.cm_degree_5_metric(pose_preds_icp, pose_gt))
            self.pose_icp_per_id.append(pose_preds_icp)

        self.adi.append(self.adi_metric(pose_preds, pose_gt))
        self.cmd5.append(self.cm_degree_5_metric(pose_preds, pose_gt))
        self.pose_per_id.append(pose_preds)
    def visualize(self, output, batch, id=0):
        img = batch['img'][0].detach().cpu().numpy()
        center = output['center'][0]
        scale = output['scale'][0]
        h, w = tless_pvnet_utils.input_scale
        trans_output_inv = data_utils.get_affine_transform(center,
                                                           scale,
                                                           0, [w, h],
                                                           inv=1)
        kpt = output['kpt_2d'].detach().cpu().numpy()
        kpt_2d = data_utils.affine_transform(kpt, trans_output_inv)[0]

        img_id = int(batch['img_id'][0])
        anno = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))[0]
        kpt_3d = np.concatenate([anno['fps_3d'], [anno['center_3d']]], axis=0)
        K = np.array(anno['K'])

        pose_gt = np.array(anno['pose'])
        pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d, K)

        corner_3d = np.array(anno['corner_3d'])
        corner_2d_gt = pvnet_pose_utils.project(corner_3d, K, pose_gt)
        corner_2d_pred = pvnet_pose_utils.project(corner_3d, K, pose_pred)

        _, ax = plt.subplots(1)
        ax.imshow(img)
        ax.add_patch(
            patches.Polygon(xy=corner_2d_gt[[0, 1, 3, 2, 0, 4, 6, 2]],
                            fill=False,
                            linewidth=1,
                            edgecolor='g'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_gt[[5, 4, 6, 7, 5, 1, 3, 7]],
                            fill=False,
                            linewidth=1,
                            edgecolor='g'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_pred[[0, 1, 3, 2, 0, 4, 6, 2]],
                            fill=False,
                            linewidth=1,
                            edgecolor='b'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_pred[[5, 4, 6, 7, 5, 1, 3, 7]],
                            fill=False,
                            linewidth=1,
                            edgecolor='b'))
        plt.show()
Exemple #4
0
    def visualize_demo(self, output, inp, meta):
        inp = img_utils.unnormalize_img(inp[0], mean, std).permute(1, 2, 0)
        kpt_2d = output['kpt_2d'][0].detach().cpu().numpy()

        kpt_3d = np.array(meta['kpt_3d'])
        K = np.array(meta['K'])

        pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d, K)

        corner_3d = np.array(meta['corner_3d'])
        corner_2d_pred = pvnet_pose_utils.project(corner_3d, K, pose_pred)

        _, ax = plt.subplots(1)
        ax.imshow(inp)
        ax.add_patch(patches.Polygon(xy=corner_2d_pred[[0, 1, 3, 2, 0, 4, 6, 2]], fill=False, linewidth=1, edgecolor='b'))
        ax.add_patch(patches.Polygon(xy=corner_2d_pred[[5, 4, 6, 7, 5, 1, 3, 7]], fill=False, linewidth=1, edgecolor='b'))
        plt.show()
Exemple #5
0
    def visualize(self, output, batch, name, high_resolution=None):
        inp = img_utils.unnormalize_img(batch['inp'][0], mean,
                                        std).permute(1, 2, 0)
        #inpnew = high_resolution
        kpt_2d = output['kpt_2d'][0].detach().cpu().numpy()
        #print(kpt_2d)
        img_id = int(batch['img_id'][0])
        anno = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))[0]
        kpt_3d = np.concatenate([anno['fps_3d'], [anno['center_3d']]], axis=0)
        #K = np.array(anno['K'])
        #print(K)
        #print(K.shape)
        K = np.array([[1.2430691e+03, 0, 5.45181403e+02],
                      [0, 1.23942895e+03, 7.0817400e+02], [0, 0, 1]])

        #pose_gt = np.array(anno['pose'])
        pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d, K)

        corner_3d = np.array(anno['corner_3d'])
        #corner_2d_gt = pvnet_pose_utils.project(corner_3d, K, pose_gt)
        corner_2d_pred = pvnet_pose_utils.project(corner_3d, K, pose_pred)
        #print(corner_2d_pred)
        #corner_2d_pred = corner_2d_pred * 2.44
        _, ax = plt.subplots(1)
        plt.axis('off')
        frame = plt.gca()
        frame.axes.get_yaxis().set_visible(False)
        frame.axes.get_xaxis().set_visible(False)
        ax.imshow(inp)
        #ax.add_patch(patches.Polygon(xy=corner_2d_gt[[0, 1, 3, 2, 0, 4, 6, 2]], fill=False, linewidth=1, edgecolor='g'))
        #ax.add_patch(patches.Polygon(xy=corner_2d_gt[[5, 4, 6, 7, 5, 1, 3, 7]], fill=False, linewidth=1, edgecolor='g'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_pred[[0, 1, 3, 2, 0, 4, 6, 2]],
                            fill=False,
                            linewidth=2,
                            edgecolor='r'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_pred[[5, 4, 6, 7, 5, 1, 3, 7]],
                            fill=False,
                            linewidth=2,
                            edgecolor='r'))
        ax.figure.savefig(name, bbox_inches='tight', dpi=244)
Exemple #6
0
    def visualize(self, output, batch):
        inp = img_utils.unnormalize_img(batch['inp'][0], mean,
                                        std).permute(1, 2, 0)
        kpt_2d = output['kpt_2d'][0].detach().cpu().numpy()

        img_id = int(batch['img_id'][0])
        anno = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))[0]
        kpt_3d = np.concatenate([anno['fps_3d'], [anno['center_3d']]], axis=0)
        K = np.array(anno['K'])

        pose_gt = np.array(anno['pose'])
        pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d, K)

        corner_3d = np.array(anno['corner_3d'])
        corner_2d_gt = pvnet_pose_utils.project(corner_3d, K, pose_gt)
        corner_2d_pred = pvnet_pose_utils.project(corner_3d, K, pose_pred)

        _, ax = plt.subplots(1)
        ax.imshow(inp)
        ax.add_patch(
            patches.Polygon(xy=corner_2d_gt[[0, 1, 3, 2, 0, 4, 6, 2]],
                            fill=False,
                            linewidth=1,
                            edgecolor='g'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_gt[[5, 4, 6, 7, 5, 1, 3, 7]],
                            fill=False,
                            linewidth=1,
                            edgecolor='g'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_pred[[0, 1, 3, 2, 0, 4, 6, 2]],
                            fill=False,
                            linewidth=1,
                            edgecolor='b'))
        ax.add_patch(
            patches.Polygon(xy=corner_2d_pred[[5, 4, 6, 7, 5, 1, 3, 7]],
                            fill=False,
                            linewidth=1,
                            edgecolor='b'))
        plt.show()
Exemple #7
0
    def visualize(self, output, batch):
        img_id = int(batch['meta']['img_id'])
        img_data = self.coco.loadImgs(int(img_id))[0]
        path = img_data['file_name']
        depth_path = img_data['depth_path']
        img = np.array(Image.open(path))

        ann_ids = self.coco.getAnnIds(imgIds=img_id, catIds=self.obj_id)
        annos = self.coco.loadAnns(ann_ids)
        kpt_3d = np.concatenate([annos[0]['fps_3d'], [annos[0]['center_3d']]],
                                axis=0)
        corner_3d = np.array(annos[0]['corner_3d'])
        K = np.array(annos[0]['K'])

        kpt_2d = output['kpt_2d'].detach().cpu().numpy()
        centers = batch['meta']['center']
        scales = batch['meta']['scale']
        boxes = batch['meta']['box']
        h, w = batch['inp'].size(2), batch['inp'].size(3)

        kpt_2ds = []
        segs = []
        for i in range(len(centers)):
            center = centers[i].detach().cpu().numpy()
            scale = scales[i].detach().cpu().numpy()
            kpt_2d_ = kpt_2d[i]
            trans_inv = data_utils.get_affine_transform(center[0],
                                                        scale[0],
                                                        0, [w, h],
                                                        inv=1)
            kpt_2d_ = data_utils.affine_transform(kpt_2d_, trans_inv)
            kpt_2ds.append(kpt_2d_)

            seg = torch.argmax(output['seg'][i], dim=0).detach().cpu().numpy()
            seg = seg.astype(np.uint8)
            seg = cv2.warpAffine(seg,
                                 trans_inv, (720, 540),
                                 flags=cv2.INTER_NEAREST)
            segs.append(seg)

        _, ax = plt.subplots(1)
        ax.imshow(img)

        # for i in range(len(boxes)):
        #     x_min, y_min, x_max, y_max = boxes[i].view(-1).numpy()
        #     ax.plot([x_min, x_min, x_max, x_max, x_min], [y_min, y_max, y_max, y_min, y_min])

        depth = np.array(Image.open(depth_path)).astype(np.float32)

        for i, kpt_2d in enumerate(kpt_2ds):
            pose_pred = pvnet_pose_utils.pnp(kpt_3d, kpt_2d, K)

            mask = segs[i]
            box = cv2.boundingRect(mask.astype(np.uint8))
            x, y = box[0] + box[2] / 2., box[1] + box[3] / 2.
            z = np.mean(depth[mask != 0] / 10000.)
            x = ((x - K[0, 2]) * z) / float(K[0, 0])
            y = ((y - K[1, 2]) * z) / float(K[1, 1])
            center = [x, y, z]

            # pose_pred[:, 3] = center

            corner_2d_pred = pvnet_pose_utils.project(corner_3d, K, pose_pred)
            ax.add_patch(
                patches.Polygon(xy=corner_2d_pred[[0, 1, 3, 2, 0, 4, 6, 2]],
                                fill=False,
                                linewidth=1,
                                edgecolor='b'))
            ax.add_patch(
                patches.Polygon(xy=corner_2d_pred[[5, 4, 6, 7, 5, 1, 3, 7]],
                                fill=False,
                                linewidth=1,
                                edgecolor='b'))

        for anno in annos:
            pose_gt = np.array(anno['pose'])
            corner_2d_gt = pvnet_pose_utils.project(corner_3d, K, pose_gt)
            ax.add_patch(
                patches.Polygon(xy=corner_2d_gt[[0, 1, 3, 2, 0, 4, 6, 2]],
                                fill=False,
                                linewidth=1,
                                edgecolor='g'))
            ax.add_patch(
                patches.Polygon(xy=corner_2d_gt[[5, 4, 6, 7, 5, 1, 3, 7]],
                                fill=False,
                                linewidth=1,
                                edgecolor='g'))

        plt.show()