def read_data_train(dataset_path, debug=False):
    h, w = 2048, 2048
    dataset = {
        'vid_name': [],
        'frame_id': [],
        'joints3D': [],
        'joints2D': [],
        'bbox': [],
        'img_name': [],
        'features': [],
    }

    model = spin.get_pretrained_hmr()

    # training data
    user_list = range(1, 9)
    seq_list = range(1, 3)
    vid_list = list(range(3)) + list(range(4, 9))

    # product = product(user_list, seq_list, vid_list)
    # user_i, seq_i, vid_i = product[process_id]

    for user_i in user_list:
        for seq_i in seq_list:
            seq_path = os.path.join(dataset_path, 'S' + str(user_i),
                                    'Seq' + str(seq_i))
            # mat file with annotations
            annot_file = os.path.join(seq_path, 'annot.mat')
            annot2 = sio.loadmat(annot_file)['annot2']
            annot3 = sio.loadmat(annot_file)['annot3']
            # calibration file and camera parameters
            for j, vid_i in enumerate(vid_list):
                # image folder
                imgs_path = os.path.join(seq_path, 'video_' + str(vid_i))
                # per frame
                pattern = os.path.join(imgs_path, '*.jpg')
                img_list = sorted(glob.glob(pattern))
                vid_used_frames = []
                vid_used_joints = []
                vid_used_bbox = []
                vid_segments = []
                vid_uniq_id = "subj" + str(user_i) + '_seq' + str(
                    seq_i) + "_vid" + str(vid_i) + "_seg0"
                for i, img_i in tqdm_enumerate(img_list):

                    # for each image we store the relevant annotations
                    img_name = img_i.split('/')[-1]
                    joints_2d_raw = np.reshape(annot2[vid_i][0][i], (1, 28, 2))
                    joints_2d_raw = np.append(joints_2d_raw,
                                              np.ones((1, 28, 1)),
                                              axis=2)
                    joints_2d = convert_kps(joints_2d_raw, "mpii3d",
                                            "spin").reshape((-1, 3))

                    # visualize = True
                    # if visualize == True and i == 500:
                    #     import matplotlib.pyplot as plt
                    #
                    #     frame = cv2.cvtColor(cv2.imread(img_i), cv2.COLOR_BGR2RGB)
                    #
                    #     for k in range(49):
                    #         kp = joints_2d[k]
                    #
                    #         frame = cv2.circle(
                    #             frame.copy(),
                    #             (int(kp[0]), int(kp[1])),
                    #             thickness=3,
                    #             color=(255, 0, 0),
                    #             radius=5,
                    #         )
                    #
                    #         cv2.putText(frame, f'{k}', (int(kp[0]), int(kp[1]) + 1), cv2.FONT_HERSHEY_SIMPLEX, 1.5,
                    #                     (0, 255, 0),
                    #                     thickness=3)
                    #
                    #     plt.imshow(frame)
                    #     plt.show()

                    joints_3d_raw = np.reshape(annot3[vid_i][0][i],
                                               (1, 28, 3)) / 1000
                    joints_3d = convert_kps(joints_3d_raw, "mpii3d",
                                            "spin").reshape((-1, 3))

                    bbox = get_bbox_from_kp2d(
                        joints_2d[~np.all(joints_2d == 0, axis=1)]).reshape(4)

                    joints_3d = joints_3d - joints_3d[39]  # 4 is the root

                    # check that all joints are visible
                    x_in = np.logical_and(joints_2d[:, 0] < w,
                                          joints_2d[:, 0] >= 0)
                    y_in = np.logical_and(joints_2d[:, 1] < h,
                                          joints_2d[:, 1] >= 0)
                    ok_pts = np.logical_and(x_in, y_in)
                    if np.sum(ok_pts) < joints_2d.shape[0]:
                        vid_uniq_id = "_".join(vid_uniq_id.split("_")[:-1])+ "_seg" +\
                                          str(int(dataset['vid_name'][-1].split("_")[-1][3:])+1)
                        continue

                    dataset['vid_name'].append(vid_uniq_id)
                    dataset['frame_id'].append(img_name.split(".")[0])
                    dataset['img_name'].append(img_i)
                    dataset['joints2D'].append(joints_2d)
                    dataset['joints3D'].append(joints_3d)
                    dataset['bbox'].append(bbox)
                    vid_segments.append(vid_uniq_id)
                    vid_used_frames.append(img_i)
                    vid_used_joints.append(joints_2d)
                    vid_used_bbox.append(bbox)

                vid_segments = np.array(vid_segments)
                ids = np.zeros((len(set(vid_segments)) + 1))
                ids[-1] = len(vid_used_frames) + 1
                if (np.where(
                        vid_segments[:-1] != vid_segments[1:])[0]).size != 0:
                    ids[1:-1] = (np.where(
                        vid_segments[:-1] != vid_segments[1:])[0]) + 1

                # for i in tqdm(range(len(set(vid_segments)))):
                #     features = extract_features(model, np.array(vid_used_frames)[int(ids[i]):int(ids[i+1])],
                #                                 vid_used_bbox[int(ids[i]):int((ids[i+1]))],
                #                                 kp_2d=np.array(vid_used_joints)[int(ids[i]):int(ids[i+1])],
                #                                 dataset='spin', debug=False)
                #     dataset['features'].append(features)

    for k in dataset.keys():
        dataset[k] = np.array(dataset[k])
    # dataset['features'] = np.concatenate(dataset['features'])

    return dataset
Exemple #2
0
def read_data(folder, set):
    dataset = {
        'img_name': [],
        'joints2D': [],
        'bbox': [],
        'vid_name': [],
        'features': [],
    }

    model = spin.get_pretrained_hmr()

    file_names = glob.glob(
        osp.join(folder, 'posetrack_data/annotations/', f'{set}/*.json'))
    file_names = sorted(file_names)
    nn_corrupted = 0
    tot_frames = 0
    min_frame_number = 8

    for fid, fname in tqdm_enumerate(file_names):
        if fname == osp.join(folder,
                             'annotations/train/021133_mpii_train.json'):
            continue

        with open(fname, 'r') as entry:
            anns = json.load(entry)
        # num_frames = anns['images'][0]['nframes']
        anns['images'] = [
            item for item in anns['images'] if item['is_labeled']
        ]
        num_frames = len(anns['images'])
        frame2imgname = dict()
        for el in anns['images']:
            frame2imgname[el['frame_id']] = el['file_name']

        num_people = -1
        for x in anns['annotations']:
            if num_people < x['track_id']:
                num_people = x['track_id']
        num_people += 1
        posetrack_joints = get_posetrack_original_kp_names()
        idxs = [
            anns['categories'][0]['keypoints'].index(h)
            for h in posetrack_joints
            if h in anns['categories'][0]['keypoints']
        ]
        for x in anns['annotations']:
            kps = np.array(x['keypoints']).reshape((17, 3))
            kps = kps[idxs, :]
            x['keypoints'] = list(kps.flatten())

        tot_frames += num_people * num_frames
        for p_id in range(num_people):

            annot_pid = [(item['keypoints'], item['bbox'], item['image_id'])
                         for item in anns['annotations']
                         if item['track_id'] == p_id
                         and not (np.count_nonzero(item['keypoints']) == 0)]

            if len(annot_pid) < min_frame_number:
                nn_corrupted += len(annot_pid)
                continue

            bbox = np.zeros((len(annot_pid), 4))
            # perm_idxs = get_perm_idxs('posetrack', 'common')
            kp_2d = np.zeros((len(annot_pid), len(annot_pid[0][0]) // 3, 3))
            img_paths = np.zeros((len(annot_pid)))

            for i, (key2djnts, bbox_p, image_id) in enumerate(annot_pid):

                if (bbox_p[2] == 0 or bbox_p[3] == 0):
                    nn_corrupted += 1
                    continue

                img_paths[i] = image_id
                key2djnts[2::3] = len(key2djnts[2::3]) * [1]

                kp_2d[i, :] = np.array(key2djnts).reshape(
                    int(len(key2djnts) / 3), 3)  # [perm_idxs, :]
                for kp_loc in kp_2d[i, :]:
                    if kp_loc[0] == 0 and kp_loc[1] == 0:
                        kp_loc[2] = 0

                x_tl = bbox_p[0]
                y_tl = bbox_p[1]
                w = bbox_p[2]
                h = bbox_p[3]
                bbox_p[0] = x_tl + w / 2
                bbox_p[1] = y_tl + h / 2
                #

                w = h = np.where(w / h > 1, w, h)
                w = h = h * 0.8
                bbox_p[2] = w
                bbox_p[3] = h
                bbox[i, :] = bbox_p

            img_paths = list(img_paths)
            img_paths = [
                osp.join(folder, frame2imgname[item]) if item != 0 else 0
                for item in img_paths
            ]

            bbx_idxs = []
            for bbx_id, bbx in enumerate(bbox):
                if np.count_nonzero(bbx) == 0:
                    bbx_idxs += [bbx_id]

            kp_2d = np.delete(kp_2d, bbx_idxs, 0)
            img_paths = np.delete(np.array(img_paths), bbx_idxs, 0)
            bbox = np.delete(bbox, np.where(~bbox.any(axis=1))[0], axis=0)

            # Convert to common 2d keypoint format
            if bbox.size == 0 or bbox.shape[0] < min_frame_number:
                nn_corrupted += 1
                continue

            kp_2d = convert_kps(kp_2d, src='posetrack', dst='spin')

            dataset['vid_name'].append(
                np.array([f'{fname}_{p_id}'] * img_paths.shape[0]))
            dataset['img_name'].append(np.array(img_paths))
            dataset['joints2D'].append(kp_2d)
            dataset['bbox'].append(np.array(bbox))

            # compute_features
            features = extract_features(
                model,
                np.array(img_paths),
                bbox,
                kp_2d=kp_2d,
                dataset='spin',
                debug=False,
            )

            assert kp_2d.shape[0] == img_paths.shape[0] == bbox.shape[0]

            dataset['features'].append(features)

    print(nn_corrupted, tot_frames)
    for k in dataset.keys():
        dataset[k] = np.array(dataset[k])

    for k in dataset.keys():
        dataset[k] = np.concatenate(dataset[k])

    for k, v in dataset.items():
        print(k, v.shape)

    return dataset