def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=4)
    parser.add_argument('--dataset_name', type=str, default="iseg2017")
    parser.add_argument('--dim', nargs="+", type=int, default=(32,32,32))
    parser.add_argument('--nEpochs', type=int, default=250)

    parser.add_argument('--classes', type=int, default=4)
    parser.add_argument('--samples_train', type=int, default=1)
    parser.add_argument('--samples_val', type=int, default=1)
    parser.add_argument('--split', type=float, default=0.8)
    parser.add_argument('--inChannels', type=int, default=2)
    parser.add_argument('--inModalities', type=int, default=2)
    parser.add_argument('--fold_id', default='1', type=str, help='Select subject for fold validation')
    parser.add_argument('--lr', default=1e-2, type=float,
                        help='learning rate (default: 1e-3)')
    parser.add_argument('--cuda', action='store_true', default=True)
    parser.add_argument('--resume', default='', type=str, metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('--model', type=str, default='UNET3D',
                        choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1', 'DENSENET2', 'DENSENET3', 'HYPERDENSENET'))
    parser.add_argument('--opt', type=str, default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    parser.add_argument('--pretrained',
                        default='../saved_models/UNET3D_checkpoints/UNET3D_24_04___14_27_iseg2017_/UNET3D_24_04___14_27_iseg2017__last_epoch.pth',
                        type=str, metavar='PATH',
                        help='path to pretrained model')

    args = parser.parse_args()

    args.save = '../inference_checkpoints/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        utils.datestr(), args.dataset_name)
    args.tb_log_dir = '../runs/'
    return args
def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=2)
    parser.add_argument('--dataset_name', type=str, default="brats2019")
    parser.add_argument('--dim', nargs="+", type=int, default=(64, 64, 64))
    parser.add_argument('--nEpochs', type=int, default=100)
    parser.add_argument('--classes', type=int, default=5)
    parser.add_argument('--samples_train', type=int, default=100)
    parser.add_argument('--samples_val', type=int, default=100)
    parser.add_argument('--inChannels', type=int, default=4)
    parser.add_argument('--inModalities', type=int, default=4)
    parser.add_argument('--split', default=0.8, type=float, help='Select percentage of training data(default: 0.8)')
    parser.add_argument('--lr', default=1e-3, type=float,
                        help='learning rate (default: 1e-3)')
    parser.add_argument('--cuda', action='store_true', default=True)
    parser.add_argument('--resume', default='', type=str, metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('--model', type=str, default='UNET3D',
                        choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1', 'DENSENET2', 'DENSENET3', 'HYPERDENSENET'))
    parser.add_argument('--opt', type=str, default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    parser.add_argument('--log_dir', type=str,
                        default='../runs/')

    args = parser.parse_args()

    args.save = '../saved_models/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        utils.datestr(), args.dataset_name)
    return args
Exemple #3
0
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()

    # TODO visual3D_temp.Basewriter package
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    criterion = DiceLoss(classes=11, skip_index_after=args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion)

        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion)

        #old
        utils.write_train_val_score(writer, epoch, train_stats, val_stats)

        model.save_checkpoint(args.save,
                              epoch,
                              val_stats[0],
                              optimizer=optimizer)
def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=4)
    parser.add_argument('--dataset_name', type=str, default="miccai2019")
    parser.add_argument('--nEpochs', type=int, default=100)
    parser.add_argument('--dim', nargs="+", type=int, default=(256, 256))
    parser.add_argument('--classes', type=int, default=7)
    parser.add_argument('--inChannels', type=int, default=3)
    parser.add_argument('--inModalities', type=int, default=1)
    parser.add_argument('--samples_train', type=int, default=100)
    parser.add_argument('--samples_val', type=int, default=10)
    parser.add_argument('--fold_id', default='1', type=str, help='Select subject for fold validation')
    parser.add_argument('--lr', default=1e-3, type=float,
                        help='learning rate (default: 1e-3)')
    parser.add_argument('--cuda', action='store_true', default=True)
    parser.add_argument('--resume', default='', type=str, metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('--model', type=str, default='UNET2D',
                        choices=(
                            'VNET', 'VNET2', 'UNET3D', 'DENSENET1', 'DENSENET2', 'DENSENET3', 'HYPERDENSENET',
                            "UNET2D"))
    parser.add_argument('--opt', type=str, default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))

    args = parser.parse_args()

    args.save = '../saved_models/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        utils.datestr(), args.dataset_name)
    return args
def main():
    args = get_arguments()

    seed = 1777777
    torch.manual_seed(seed)
    if args.cuda:
        torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    cudnn.deterministic = True
    cudnn.benchmark = True

    utils.make_dirs(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()

    # TODO visual3D_temp.Basewriter package
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    if args.cuda:

        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):

        train(args, model, training_generator, optimizer, epoch, writer)
        val_metrics, confusion_matrix = validation(args, model, val_generator,
                                                   epoch, writer)
Exemple #6
0
def main():
    args = get_arguments()

    os.environ["CUDA_VISIBLE_DEVICES"] = "0,2"
    ## FOR REPRODUCIBILITY OF RESULTS
    seed = 1777777
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()

    # TODO visual3D_temp.Basewriter package
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):
        train(args, model, training_generator, optimizer, epoch, writer)
        val_metrics, confusion_matrix = validation(args, model, val_generator,
                                                   epoch, writer)
Exemple #7
0
def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=4)
    parser.add_argument('--dataset_name', type=str, default="mrbrains4")
    parser.add_argument('--dataset_path', type=str, default="datasets")
    parser.add_argument('--dim', nargs="+", type=int, default=(128, 128, 48))
    parser.add_argument('--nEpochs', type=int, default=200)
    parser.add_argument('--inChannels', type=int, default=3)
    parser.add_argument('--inModalities', type=int, default=3)
    parser.add_argument('--terminal_show_freq', default=50)
    parser.add_argument('--samples_train', type=int, default=10)
    parser.add_argument('--samples_val', type=int, default=10)
    parser.add_argument('--classes', type=int, default=2)
    parser.add_argument('--threshold', default=0.1, type=float)
    parser.add_argument('--augmentation',
                        default='no',
                        type=str,
                        help='Tensor normalization: options max, mean, global')
    parser.add_argument('--normalization',
                        default='global_mean',
                        type=str,
                        help='Tensor normalization: options max, mean, global')

    parser.add_argument('--resume',
                        default='',
                        type=str,
                        metavar='PATH',
                        help='path to latest checkpoint (default: none)')

    parser.add_argument(
        '--split',
        default=0.9,
        type=float,
        help='Select percentage of training data(default: 0.8)')

    parser.add_argument('--lr',
                        default=1e-3,
                        type=float,
                        help='learning rate (default: 1e-3)')

    parser.add_argument('--cuda', action='store_true', default=False)

    parser.add_argument('--model',
                        type=str,
                        default='UNET3D',
                        choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1',
                                 'DENSENET2', 'DENSENET3', 'HYPERDENSENET'))
    parser.add_argument('--opt',
                        type=str,
                        default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    parser.add_argument('--log_dir', type=str, default='../runs/')

    args = parser.parse_args()

    args.save = '../saved_models/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        utils.datestr(), args.dataset_name)
    return args
Exemple #8
0
def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=2)
    parser.add_argument('--dataset_name', type=str, default="iseg2019")
    parser.add_argument('--dim', nargs="+", type=int, default=(32, 32, 32))
    parser.add_argument('--nEpochs', type=int, default=200)
    parser.add_argument('--classes', type=int, default=4)
    parser.add_argument('--samples_train', type=int, default=10)
    parser.add_argument('--samples_val', type=int, default=10)
    parser.add_argument('--inChannels', type=int, default=2)
    parser.add_argument('--inModalities', type=int, default=2)
    parser.add_argument('--threshold', default=0.0001, type=float)
    parser.add_argument('--terminal_show_freq', default=50)
    parser.add_argument('--augmentation', action='store_true', default=True)
    parser.add_argument('--normalization',
                        default='full_volume_mean',
                        type=str,
                        help='Tensor normalization: options ,max_min,',
                        choices=('max_min', 'full_volume_mean', 'brats', 'max',
                                 'mean'))
    parser.add_argument('--fold_id',
                        default='1',
                        type=str,
                        help='Select subject for fold validation')
    parser.add_argument('--lr',
                        default=1e-3,
                        type=float,
                        help='learning rate (default: 1e-3)')
    parser.add_argument(
        '--split',
        default=0.8,
        type=float,
        help='Select percentage of training data(default: 0.8)')
    parser.add_argument('--cuda', action='store_true', default=True)
    parser.add_argument('--loadData', default=True)
    parser.add_argument('--resume',
                        default='',
                        type=str,
                        metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('--model',
                        type=str,
                        default='UNET3D',
                        choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1',
                                 'DENSENET2', 'DENSENET3', 'HYPERDENSENET'))
    parser.add_argument('--opt',
                        type=str,
                        default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    parser.add_argument('--log_dir', type=str, default='../runs/')

    args = parser.parse_args()

    args.save = '../saved_models/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        utils.datestr(), args.dataset_name)
    return args
def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=1)
    parser.add_argument('--dataset_name', type=str, default="ribfrac")
    parser.add_argument('--dim', nargs="+", type=int, default=(64, 64, 64))
    parser.add_argument('--nEpochs', type=int, default=250)

    parser.add_argument('--classes', type=int, default=6)
    parser.add_argument('--samples_train', type=int, default=1)
    parser.add_argument('--samples_val', type=int, default=1)
    parser.add_argument('--split', type=float, default=0.8)
    parser.add_argument('--inChannels', type=int, default=1)
    parser.add_argument('--inModalities', type=int, default=1)
    parser.add_argument('--fold_id', default='1', type=str, help='Select subject for fold validation')
    parser.add_argument('--lr', default=1e-2, type=float,
                        help='learning rate (default: 1e-3)')
    parser.add_argument('--cuda', action='store_true', default=True)
    parser.add_argument('--resume', default='', type=str, metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('--model', type=str, default='UNET3D',
                        choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1', 'DENSENET2', 'DENSENET3', 'HYPERDENSENET','DENSEVOXELNET'))
    parser.add_argument('--opt', type=str, default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    parser.add_argument('--loadData', default=False)
    
    # params need to be set for test
    parser.add_argument('--pretrained',
                        # default='/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_64x64x48_0.1_weight0.1/UNET3D_64x64x48_0.1_weight0.1_BEST.pth',
                        # default = '/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_128x128x48_thresh0.1_sample1200_epoch600_fgbg/UNET3D_128x128x48_thresh0.1_sample1200_epoch600_fgbg_BEST.pth',
                        
                        # default='/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_128x128x48_thresh0.3_weight0.01_sample400/UNET3D_128x128x48_thresh0.3_weight0.01_sample400_BEST.pth',
                        # default='/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_128x128x48_thresh0.3_weight0.01_sample400_epoch600_test_val+/UNET3D_128x128x48_thresh0.3_weight0.01_sample400_epoch600_test_val+_BEST.pth',
                        # default='/data/hejy/MedicalZooPytorch/saved_models/DENSEVOXELNET_checkpoints/DENSEVOXELNET_128x128x48_thresh0.1_weight1_sample400_epoch600_augdata/DENSEVOXELNET_128x128x48_thresh0.1_weight1_sample400_epoch600_augdata_BEST.pth',
                        # default='/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_128x128x48_thresh0.1_weight1_sample400_epoch600_augdata/UNET3D_128x128x48_thresh0.1_weight1_sample400_epoch600_augdata_BEST.pth',
                        # default='/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_128x128x48_thresh0.1_sample1200_epoch600_fgbg/UNET3D_128x128x48_thresh0.1_sample1200_epoch600_fgbg_last_epoch.pth',
                        # default = '/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_196x196x96_thresh0.1_weight1_sample400/UNET3D_196x196x96_thresh0.1_weight1_sample400_BEST.pth',
                        default = '/data/hejy/MedicalZooPytorch_copy/saved_models/UNET3D_checkpoints/UNET3D_256x256x256_thresh0.8_weight1_sample1200/UNET3D_256x256x256_thresh0.8_weight1_sample1200_BEST.pth',
                        # default = '/data/hejy/MedicalZooPytorch_2cls/saved_models/UNET3D_checkpoints/2cls_UNET3D_512x512x96_thresh0.6_weight1_sample200/2cls_UNET3D_512x512x96_thresh0.6_weight1_sample200_BEST.pth',
                        # default='/data/hejy/MedicalZooPytorch/saved_models/UNET3D_checkpoints/UNET3D_128x128x48_thresh0.3_sample400_epoch600_test_val+_wce/UNET3D_128x128x48_thresh0.3_sample400_epoch600_test_val+_wce_BEST.pth',

                        type=str, metavar='PATH',
                        help='path to pretrained model')
    parser.add_argument('--nii_save_path', default='/data/hejy/MedicalZooPytorch_copy/saved_nii')
    parser.add_argument('--test_path', default="/data/beijing/dataset/MICCAI-RibFrac2020/ribfrac-val-images")
    # parser.add_argument('--test_path', default="/data/hejy/MedicalZooPytorch/datasets/MICCAI_2020_ribfrac/org/ribfrac-val-images")




    args = parser.parse_args()
    args.save = '/data/hejy/MedicalZooPytorch_copy/inference_checkpoints/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        utils.datestr(), args.dataset_name)
    args.tb_log_dir = '../runs/'
    return args
    def __init__(self, args):

        name_model = args.log_dir + args.model + "_" + args.dataset_name + "_" + utils.datestr(
        )
        self.writer = SummaryWriter(log_dir=args.log_dir + name_model,
                                    comment=name_model)

        utils.make_dirs(args.save)
        self.csv_train, self.csv_val = self.create_stats_files(args.save)
        self.dataset_name = args.dataset_name
        self.classes = args.classes
        self.label_names = dict_class_names[args.dataset_name]

        self.data = self.create_data_structure()
Exemple #11
0
def get_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSz', type=int, default=1)
    parser.add_argument('--dataset_name', type=str, default="iseg2017")
    parser.add_argument('--dim', nargs="+", type=int, default=(32, 32, 32))
    parser.add_argument('--nEpochs', type=int, default=250)
    parser.add_argument('--classes', type=int, default=4)
    parser.add_argument('--samples_train', type=int, default=10)
    parser.add_argument('--samples_val', type=int, default=10)
    parser.add_argument('--inChannels', type=int, default=2)
    parser.add_argument('--inModalities', type=int, default=2)
    parser.add_argument('--fold_id',
                        default='1',
                        type=str,
                        help='Select subject for fold validation')
    parser.add_argument('--lr',
                        default=1e-3,
                        type=float,
                        help='learning rate (default: 1e-3)')
    parser.add_argument('--cuda', action='store_true', default=False)
    parser.add_argument('--resume',
                        default='',
                        type=str,
                        metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('--model',
                        type=str,
                        default='DENSEVOXELNET',
                        choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1',
                                 'DENSENET2', 'DENSENET3', 'HYPERDENSENET'))
    parser.add_argument('--opt',
                        type=str,
                        default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    parser.add_argument(
        '--log_dir',
        type=str,
        default=
        '/home/papastrat/PycharmProjects/MedicalZooPytorch/runs/lias_test_run')
    args = parser.parse_args()

    args.save = '../saved_models/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format(
        datestr(), args.dataset_name)
    return args
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    train_f, val_f = utils.create_stats_files(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)
    best_prec1 = 100.

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion, train_f, writer)

        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion, val_f, writer)

        utils.write_train_val_score(writer, epoch, train_stats, val_stats)

        model.save_checkpoint(args.save,
                              epoch,
                              val_stats[0],
                              optimizer=optimizer)

        # if epoch % 5 == 0:
        # utils.visualize_no_overlap(args, full_volume, affine, model, epoch, DIM, writer)

        #utils.save_model(model, args, val_stats[0], epoch, best_prec1)

    train_f.close()
    val_f.close()
    def __init__(self, args):
        name_model = args.model + "_" + args.dataset_name + "_" + datestr()
        self.writer = SummaryWriter(log_dir=args.tb_log_dir,
                                    comment=name_model)

        # self.step = 0
        # self.mode = ''
        self.csv_train, self.csv_val = self.create_stats_files(args.save)
        self.dataset_name = args.dataset_name
        self.label_names = dict_class_names[args.dataset_name]
        self.data = {
            "train": dict((label, 0.0) for label in self.label_names),
            "val": dict((label, 0.0) for label in self.label_names)
        }
        self.data['train']['loss'] = 0.0
        self.data['val']['loss'] = 0.0
        self.data['train']['count'] = 1.0
        self.data['val']['count'] = 1.0

        self.data['train']['dsc'] = 0.0
        self.data['val']['dsc'] = 0.0
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    train_f, val_f = utils.create_stats_files(args.save)

    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    best_pred = 1.01
    samples_train = 200
    samples_val = 200
    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args,
        path='.././datasets',
        samples_train=samples_train,
        samples_val=samples_val)

    model, optimizer = medzoo.create_model(args)
    criterion = medzoo.DiceLoss2D(args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()

    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion, train_f, writer)
        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion, val_f, writer)

        utils.write_train_val_score(writer, epoch, train_stats, val_stats)
        best_pred = utils.save_model(model=model,
                                     args=args,
                                     dice_loss=val_stats[0],
                                     epoch=epoch,
                                     best_pred_loss=best_pred)

    train_f.close()
    val_f.close()
# globals
perfs = []

# actual run
if __name__ == "__main__":
    # parse args out
    parser = argparse.ArgumentParser()
    parser.add_argument("identifier", type=str, help="A uniquely identifying string for this file with format [init_weights_class]_[training_class]")
    parser.add_argument("pos_class", type=str, help="Which folder in data/Flickr_2800/ to load for training")
    parser.add_argument('-t', '--transplant', type=str, help='The identifier of the transplant to start from')
    parser.add_argument('-l', '--lesion_indicator', type=str, default='')
    args = parser.parse_args()

    # load user configured constants
    if args.lesion_indicator is not '':
        IDENTIFIER = args.identifier + '_t' + args.lesion_indicator + utils.datestr()
    else:
        IDENTIFIER = args.identifier + utils.datestr()

    POSITIVE_IMAGE_DIR = os.path.join('data/Flickr_2800', args.pos_class)

    # let the user know what we're up to
    log.log("Training " + IDENTIFIER + " FROM " + POSITIVE_IMAGE_DIR)
    if args.transplant is not None:
        log.log("(Starting from " + args.transplant + "_t" + args.lesion_indicator + ")")
    else:
        log.log("(Starting from <blank net, random weights>)")

    # train it all
    with AlexNet() as alexnet:
        # Load data