def run(seed=1, ticks=100): print('#', seed) rseed(seed) w = o(now=0) while w.now < ticks: alive = False for machine in shuffle(Machine.Factory): if not machine.here.stop(): alive = True w.now += 1 machine.step(w) Machine.report(machine.name) break if not alive: break return w
train_y_valid = data["y_valid"] train_y_not_valid = data["y_not_valid"] max_length = data["max_length"][0] #split data, make sure test data contains all types of samples (valid and not valid ones) train_x_valid, test_x_valid, train_y_valid, test_y_valid = split_dataset( train_x_valid, train_y_valid, 5) train_x_not_valid, test_x_not_valid, train_y_not_valid, test_y_not_valid = split_dataset( train_x_not_valid, train_y_not_valid, 5) train_x = numpy.concatenate((train_x_valid, train_x_not_valid)) train_y = numpy.concatenate((train_y_valid, train_y_not_valid)) test_x = numpy.concatenate((test_x_valid, test_x_not_valid)) test_y = numpy.concatenate((test_y_valid, test_y_not_valid)) train_x, train_y = shuffle(train_x, train_y) test_x, test_y = shuffle(test_x, test_y) #convert y to one-hot encoding #train_y = to_categorical(train_y, 2) #test_y = to_categorical(test_y, 2) train_x = train_x.astype("float32") test_x = test_x.astype("float32") #train_x /= 255 #test_x /= 255 train_x = numpy.expand_dims(train_x, axis=2) test_x = numpy.expand_dims(test_x, axis=2)
def next(i, w): for tran in shuffle(i.out): if tran.gaurd(w, tran): return tran.there return i