def test_only_one_value(): possible_values = ["val1", "val2", "val3"] data = pd.Series(["val2"]) expected = pd.DataFrame([(0, 1, 0)], columns=possible_values) actual = get_dummies(data, possible_values) assert_frame_equal(expected, actual)
def test_empty_input(): possible_values = ["val1", "val2", "val3"] data = pd.Series([]) expected = pd.DataFrame([], columns=possible_values) actual = get_dummies(data, possible_values) assert_frame_equal(expected, actual)
def test_all_values(): possible_values = ["val1", "val2", "val3"] data = pd.Series(["val1", "val3", "val1", "val2"]) expected = pd.DataFrame([(1, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0)], columns=possible_values) actual = get_dummies(data, possible_values) assert_frame_equal(expected, actual)
def test_only_nan(): possible_values = ["val1", "val2", "val3"] data = pd.Series([np.nan, np.nan, np.nan, np.nan]) expected = pd.DataFrame([(np.nan, np.nan, np.nan), (np.nan, np.nan, np.nan), (np.nan, np.nan, np.nan), (np.nan, np.nan, np.nan)], columns=possible_values) actual = get_dummies(data, possible_values) assert_frame_equal(expected, actual)
def test_all_values_and_nan(): possible_values = ["val1", "val2", "val3"] data = pd.Series(["val1", "val3", "val1", "val2", np.nan]) expected = pd.DataFrame([(1, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0), (np.nan, np.nan, np.nan)], columns=possible_values) actual = get_dummies(data, possible_values) assert_frame_equal(expected, actual)
def test_illegal_value(): possible_values = ["val1", "val2", "val3"] data = pd.Series(["val1", "val3", "val1", "val4"]) get_dummies(data, possible_values)