Exemple #1
0
def main():
    NAME = "01_baseline"

    random.seed(common.SEED)
    torch.manual_seed(common.SEED)
    params = common.HYPERPARAMS["pong"]
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda",
                        default=True,
                        action="store_true",
                        help="Enable cuda")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env = gym.make(params.env_name)
    env = ptan.common.wrappers.wrap_dqn(env)
    env.seed(common.SEED)

    net = dqn_model.DQN(env.observation_space.shape,
                        env.action_space.n).to(device)

    tgt_net = ptan.agent.TargetNet(net)
    selector = ptan.actions.EpsilonGreedyActionSelector(
        epsilon=params.epsilon_start)
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = ptan.agent.DQNAgent(net, selector, device=device)

    exp_source = ptan.experience.ExperienceSourceFirstLast(env,
                                                           agent,
                                                           gamma=params.gamma)
    buffer = ptan.experience.ExperienceReplayBuffer(
        exp_source, buffer_size=params.replay_size)
    optimizer = optim.Adam(net.parameters(), lr=params.learning_rate)

    def process_batch(engine_, batch):
        optimizer.zero_grad()
        loss_v = common.calc_loss_dqn(batch,
                                      net,
                                      tgt_net.target_model,
                                      gamma=params.gamma,
                                      device=device)
        loss_v.backward()
        optimizer.step()
        epsilon_tracker.frame(engine_.state.iteration)
        if engine_.state.iteration % params.target_net_sync == 0:
            tgt_net.sync()
        return {
            "loss": loss_v.item(),
            "epsilon": selector.epsilon,
        }

    engine = Engine(process_batch)
    common.setup_ignite(engine, params, exp_source, NAME)
    engine.run(
        common.batch_generator(buffer, params.replay_initial,
                               params.batch_size))
Exemple #2
0
    random.seed(common.SEED)
    torch.manual_seed(common.SEED)
    params = common.HYPERPARAMS["pong"]
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda",
                        default=False,
                        action="store_true",
                        help="Enable cuda")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env = gym.make(params.env_name)
    env = ptan.common.wrappers.wrap_dqn(env)
    env.seed(common.SEED)

    net = dqn_model.DQN(env.observation_space.shape,
                        env.action_space.n).to(device)

    tgt_net = ptan.agent.TargetNet(net)
    selector = ptan.actions.EpsilonGreedyActionSelector(
        epsilon=params.epsilon_start)
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = DQNAgent(net, selector, device=device)

    exp_source = ptan.experience.ExperienceSourceFirstLast(env,
                                                           agent,
                                                           gamma=params.gamma,
                                                           steps_count=1)
    buffer = ptan.experience.ExperienceReplayBuffer(
        exp_source, buffer_size=params.replay_size)
    optimizer = optim.Adam(net.parameters(), lr=params.learning_rate)
Exemple #3
0
def main():
    NAME = "03_double"
    STATES_TO_EVALUATE = 1000
    EVAL_EVERY_FRAME = 100

    random.seed(common.SEED)
    torch.manual_seed(common.SEED)
    params = common.HYPERPARAMS["pong"]
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda",
                        default=False,
                        action="store_true",
                        help="Enable cuda")
    parser.add_argument("--double",
                        default=False,
                        action="store_true",
                        help="Enable double dqn")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env = gym.make(params.env_name)
    env = ptan.common.wrappers.wrap_dqn(env)
    env.seed(common.SEED)

    net = dqn_model.DQN(env.observation_space.shape,
                        env.action_space.n).to(device)

    tgt_net = ptan.agent.TargetNet(net)
    selector = ptan.actions.EpsilonGreedyActionSelector(
        epsilon=params.epsilon_start)
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = ptan.agent.DQNAgent(net, selector, device=device)

    exp_source = ptan.experience.ExperienceSourceFirstLast(env,
                                                           agent,
                                                           gamma=params.gamma)
    buffer = ptan.experience.ExperienceReplayBuffer(
        exp_source, buffer_size=params.replay_size)
    optimizer = optim.Adam(net.parameters(), lr=params.learning_rate)

    def process_batch(engine_, batch):
        optimizer.zero_grad()
        loss_v = calc_loss_double_dqn(batch,
                                      net,
                                      tgt_net.target_model,
                                      gamma=params.gamma,
                                      device=device,
                                      double=args.double)
        loss_v.backward()
        optimizer.step()
        epsilon_tracker.frame(engine_.state.iteration)
        if engine_.state.iteration % params.target_net_sync == 0:
            tgt_net.sync()
        if engine_.state.iteration % EVAL_EVERY_FRAME == 0:
            eval_states = getattr(engine_.state, "eval_states", None)
            if eval_states is None:
                eval_states = buffer.sample(STATES_TO_EVALUATE)
                eval_states = [
                    np.array(transition.state, copy=False)
                    for transition in eval_states
                ]
                eval_states = np.array(eval_states, copy=False)
                engine_.state.eval_states = eval_states
            engine_.state.metrics["values"] = common.calc_values_of_states(
                eval_states, net, device)
        return {
            "loss": loss_v.item(),
            "epsilon": selector.epsilon,
        }

    engine = Engine(process_batch)
    common.setup_ignite(engine,
                        params,
                        exp_source,
                        f"{NAME}={args.double}",
                        extra_metrics=("values", ))
    engine.run(
        common.batch_generator(buffer, params.replay_initial,
                               params.batch_size))