Exemple #1
0
class LocalFSMMapBackend(IOBackend):
    def __init__(self, decoder=None, corrections: CorrectionSet = None):
        self._decoder = decoder
        self._corrections = corrections
        self._buffer_pool = BufferPool()

    def need_copy(self,
                  roi,
                  native_dtype,
                  read_dtype,
                  tiling_scheme=None,
                  fileset=None):
        # checking conditions in which "straight mmap" is not possible
        # straight mmap means our dataset can just return views into the underlying mmap object
        # as tiles and use them as they are in the UDFs

        # 1) if a roi is given, straight mmap doesn't work because there are gaps in the navigation
        # axis:
        if roi is not None:
            log.debug("have roi, need copy")
            return True

        # 2) if we need to decode data, or do dtype conversion, we can't return
        # views into the underlying file:
        if self._need_decode(native_dtype, read_dtype):
            log.debug("have decode, need copy")
            return True

        # 3) if we have less frames per file than tile depth, we need to copy, too
        if tiling_scheme and fileset:
            fileset_arr = fileset.get_as_arr()
            if np.min(fileset_arr[:, 1] -
                      fileset_arr[:, 0]) < tiling_scheme.depth:
                log.debug("too large for fileset, need copy")
                return True

        # 4) if we apply corrections, we need to copy
        if self._corrections is not None and self._corrections.have_corrections(
        ):
            log.debug("have corrections, need copy")
            return True

        return False

    def _need_decode(self, native_dtype, read_dtype):
        # FIXME: even with dtype "mismatch", we can possibly do dtype
        # conversion, if the tile size is small enough! maybe benchmark this
        # vs. _get_tiles_w_copy?
        if native_dtype != read_dtype:
            return True
        if self._decoder is not None:
            return True
        return False

    def _get_tiles_straight(self, tiling_scheme, fileset, read_ranges):
        """
        Parameters
        ----------

        fileset : FileSet
            To ensure best performance, should be limited to the files
            that are part of the current partition (otherwise we will
            spend more time finding the right file for a given frame
            index)

        read_ranges : Tuple[np.ndarray, np.ndarray]
            As returned by `get_read_ranges`
        """

        ds_sig_shape = tiling_scheme.dataset_shape.sig
        sig_dims = tiling_scheme.shape.sig.dims
        slices, ranges, scheme_indices = read_ranges
        for idx in range(slices.shape[0]):
            origin, shape = slices[idx]
            tile_ranges = ranges[idx]
            scheme_idx = scheme_indices[idx]

            # FIXME: for straight mmap, read_ranges must not contain tiles
            # that span multiple files!
            file_idx = tile_ranges[0][0]
            fh = fileset[file_idx]
            memmap = fh.mmap().reshape((fh.num_frames, ) + tuple(ds_sig_shape))
            tile_slice = Slice(origin=origin,
                               shape=Shape(shape, sig_dims=sig_dims))
            data_slice = (slice(origin[0] - fh.start_idx, origin[0] -
                                fh.start_idx + shape[0]), ) + tuple([
                                    slice(o, (o + s))
                                    for (o, s) in zip(origin[1:], shape[1:])
                                ])
            data = memmap[data_slice]
            yield DataTile(
                data,
                tile_slice=tile_slice,
                scheme_idx=scheme_idx,
            )

    def get_read_and_decode(self, decode):
        key = (decode, )
        if key in _r_n_d_cache:
            return _r_n_d_cache[key]
        r_n_d = _make_mmap_reader_and_decoder(decode=decode)
        _r_n_d_cache[key] = r_n_d
        return r_n_d

    def preprocess(self, data, tile_slice):
        if self._corrections is None:
            return
        self._corrections.apply(data, tile_slice)

    def _get_tiles_w_copy(self, tiling_scheme, fileset, read_ranges,
                          read_dtype, native_dtype):
        if self._decoder is not None:
            decoder = self._decoder
        else:
            decoder = DtypeConversionDecoder()
        decode = decoder.get_decode(
            native_dtype=np.dtype(native_dtype),
            read_dtype=np.dtype(read_dtype),
        )
        r_n_d = self._r_n_d = self.get_read_and_decode(decode)

        native_dtype = decoder.get_native_dtype(native_dtype, read_dtype)

        mmaps = List()
        for fh in fileset:
            mmaps.append(np.frombuffer(fh.raw_mmap(), dtype=np.uint8))

        sig_dims = tiling_scheme.shape.sig.dims
        ds_shape = np.array(tiling_scheme.dataset_shape)

        largest_slice = sorted([(np.prod(s_.shape), s_)
                                for _, s_ in tiling_scheme.slices],
                               key=lambda x: x[0],
                               reverse=True)[0][1]

        buf_shape = (tiling_scheme.depth, ) + tuple(largest_slice.shape)

        need_clear = decoder.do_clear()

        with self._buffer_pool.empty(buf_shape,
                                     dtype=read_dtype) as out_decoded:
            out_decoded = out_decoded.reshape((-1, ))

            slices = read_ranges[0]
            ranges = read_ranges[1]
            scheme_indices = read_ranges[2]
            for idx in range(slices.shape[0]):
                origin, shape = slices[idx]
                tile_ranges = ranges[idx]
                scheme_idx = scheme_indices[idx]
                out_cut = out_decoded[:np.prod(shape)].reshape((shape[0], -1))
                data = r_n_d(
                    idx,
                    mmaps,
                    sig_dims,
                    tile_ranges,
                    out_cut,
                    native_dtype,
                    do_zero=need_clear,
                    origin=origin,
                    shape=shape,
                    ds_shape=ds_shape,
                )
                tile_slice = Slice(origin=origin,
                                   shape=Shape(shape, sig_dims=sig_dims))
                data = data.reshape(shape)
                self.preprocess(data, tile_slice)
                yield DataTile(
                    data,
                    tile_slice=tile_slice,
                    scheme_idx=scheme_idx,
                )

    def get_tiles(self, tiling_scheme, fileset, read_ranges, roi, native_dtype,
                  read_dtype):
        # TODO: how would compression work?
        # TODO: sparse input data? COO format? fill rate? → own pipeline! → later!
        # strategy: assume low (20%?) fill rate, read whole partition and apply ROI in-memory
        #           partitioning when opening the dataset, or by having one file per partition

        with fileset:
            self._set_readahead_hints(roi, fileset)
            if not self.need_copy(
                    tiling_scheme=tiling_scheme,
                    fileset=fileset,
                    roi=roi,
                    native_dtype=native_dtype,
                    read_dtype=read_dtype,
            ):
                yield from self._get_tiles_straight(tiling_scheme, fileset,
                                                    read_ranges)
            else:
                yield from self._get_tiles_w_copy(
                    tiling_scheme=tiling_scheme,
                    fileset=fileset,
                    read_ranges=read_ranges,
                    read_dtype=read_dtype,
                    native_dtype=native_dtype,
                )

    def _set_readahead_hints(self, roi, fileset):
        if not hasattr(os, 'posix_fadvise'):
            return
        if any([f.fileno() is None for f in fileset]):
            return
        if roi is None:
            for f in fileset:
                os.posix_fadvise(
                    f.fileno(), 0, 0,
                    os.POSIX_FADV_SEQUENTIAL | os.POSIX_FADV_WILLNEED)
        else:
            for f in fileset:
                os.posix_fadvise(f.fileno(), 0, 0,
                                 os.POSIX_FADV_RANDOM | os.POSIX_FADV_WILLNEED)
class BufferedBackendImpl(IOBackendImpl):
    def __init__(self, max_buffer_size):
        super().__init__()
        self._max_buffer_size = max_buffer_size
        self._buffer_pool = BufferPool()

    def need_copy(
        self, decoder, roi, native_dtype, read_dtype, tiling_scheme=None, fileset=None,
        sync_offset=0, corrections=None,
    ):
        return True  # we always copy in this backend

    def get_read_and_decode(self, decode):
        key = (decode, "read")
        if key in _r_n_d_cache:
            return _r_n_d_cache[key]
        r_n_d = _make_buffered_reader_and_decoder(decode=decode)
        _r_n_d_cache[key] = r_n_d
        return r_n_d

    def get_max_io_size(self):
        return self._max_buffer_size

    def _get_tiles_by_block(
        self, tiling_scheme, fileset, read_ranges, read_dtype, native_dtype, decoder=None,
        corrections=None, sync_offset=0,
    ):
        if decoder is None:
            decoder = DtypeConversionDecoder()
        decode = decoder.get_decode(
            native_dtype=np.dtype(native_dtype),
            read_dtype=np.dtype(read_dtype),
        )
        r_n_d = self._r_n_d = self.get_read_and_decode(decode)

        native_dtype = decoder.get_native_dtype(native_dtype, read_dtype)

        sig_dims = tiling_scheme.shape.sig.dims
        ds_shape = np.array(tiling_scheme.dataset_shape)

        largest_slice = sorted([
            (np.prod(s_.shape), s_)
            for _, s_ in tiling_scheme.slices
        ], key=lambda x: x[0], reverse=True)[0][1]

        buf_shape = (tiling_scheme.depth,) + tuple(largest_slice.shape)

        need_clear = decoder.do_clear()

        slices = read_ranges[0]
        shape_prods = np.prod(slices[..., 1, :], axis=1)
        ranges = read_ranges[1]
        scheme_indices = read_ranges[2]
        tile_block_size = len(tiling_scheme)

        with self._buffer_pool.empty(buf_shape, dtype=read_dtype) as out_decoded:
            out_decoded = out_decoded.reshape((-1,))
            for block_idx in range(0, slices.shape[0], tile_block_size):
                block_ranges = ranges[block_idx:block_idx + tile_block_size]

                fill_factor, req_buf_size, min_per_file, max_per_file = block_get_min_fill_factor(
                    block_ranges
                )
                # TODO: if it makes sense, implement sparse variant
                # if req_buf_size > self._max_buffer_size or fill_factor < self._sparse_threshold:
                yield from self._read_block_dense(
                    block_idx, tile_block_size, min_per_file, max_per_file, fileset,
                    slices, ranges, scheme_indices, shape_prods, out_decoded, r_n_d,
                    sig_dims, ds_shape, need_clear, native_dtype, corrections,
                )

    def _read_block_dense(
        self, block_idx, tile_block_size, min_per_file, max_per_file, fileset,
        slices, ranges, scheme_indices, shape_prods, out_decoded, r_n_d,
        sig_dims, ds_shape, need_clear, native_dtype, corrections,
    ):
        """
        Reads a block of tiles, starting at `block_idx`, having a size of
        `tile_block_size` read range entries.
        """
        # phase 1: read
        buffers = Dict()
        for fileno in min_per_file.keys():
            fh = fileset[fileno]
            read_size = max_per_file[fileno] - min_per_file[fileno]
            # FIXME: re-use buffers
            buffers[fileno] = np.zeros(read_size, dtype=np.uint8)
            # FIXME: file header offset handling is a bit weird
            # FIXME: maybe file header offset should be folded into the read ranges instead?
            fh.seek(min_per_file[fileno] + fh._file_header)
            fh.readinto(buffers[fileno])

        # phase 2: decode tiles from the data that was read
        for idx in range(block_idx, block_idx + tile_block_size):
            origin = slices[idx, 0]
            shape = slices[idx, 1]
            tile_ranges = ranges[idx]
            scheme_idx = scheme_indices[idx]
            out_cut = out_decoded[:shape_prods[idx]].reshape((shape[0], -1))

            data = r_n_d(
                idx,
                buffers, sig_dims, tile_ranges,
                out_cut, native_dtype, do_zero=need_clear,
                origin=origin, shape=shape, ds_shape=ds_shape,
                offsets=min_per_file,
            )
            tile_slice = Slice(
                origin=origin,
                shape=Shape(shape, sig_dims=sig_dims)
            )
            data = data.reshape(shape)
            self.preprocess(data, tile_slice, corrections)
            yield DataTile(
                data,
                tile_slice=tile_slice,
                scheme_idx=scheme_idx,
            )

    def get_tiles(
        self, tiling_scheme, fileset, read_ranges, roi, native_dtype, read_dtype, decoder,
        sync_offset, corrections,
    ):
        with fileset:
            yield from self._get_tiles_by_block(
                tiling_scheme=tiling_scheme,
                fileset=fileset,
                read_ranges=read_ranges,
                read_dtype=read_dtype,
                native_dtype=native_dtype,
                decoder=decoder,
                corrections=corrections,
                sync_offset=sync_offset,
            )
Exemple #3
0
class MMapBackendImpl(IOBackendImpl):
    def __init__(self, enable_readahead_hints=False):
        super().__init__()
        self._enable_readahead = enable_readahead_hints
        self._buffer_pool = BufferPool()

    def _get_tiles_straight(self, tiling_scheme, fileset, read_ranges, sync_offset=0):
        """
        Read straight from the file system cache, via memory mapping, without
        any decoding step.

        This method makes a few assumptions:
         - no corrections are needed
         - tiles don't span multiple files
         - the `LocalFile` has already cut away headers and footers
           (both per-file and per-frame) from the mmap

        Parameters
        ----------

        fileset : FileSet
            The fileset must correspond to the indices used in the `read_ranges`.
            Usually, that means it is limited to the files that are part of the
            current partition.

        read_ranges : Tuple[np.ndarray, np.ndarray, np.ndarray]
            As returned by `get_read_ranges`
        """

        ds_sig_shape = tuple(tiling_scheme.dataset_shape.sig)
        sig_dims = tiling_scheme.shape.sig.dims
        slices, ranges, scheme_indices = read_ranges
        for idx in range(slices.shape[0]):
            origin, shape = slices[idx]
            tile_ranges = ranges[idx]
            scheme_idx = scheme_indices[idx]

            # NOTE: for straight mmap, read_ranges must not contain tiles
            # that span multiple files. This is ensured in IOBackend.need_copy
            # (that is, we force copying if files are smaller than tiles)
            file_idx = tile_ranges[0][0]
            fh = fileset[file_idx]
            memmap = fh.mmap().reshape((fh.num_frames,) + ds_sig_shape)
            tile_slice = Slice(
                origin=origin,
                shape=Shape(shape, sig_dims=sig_dims)
            )
            # sync_offset is either zero or positive
            # in case of negative sync_offset, _get_tiles_w_copy is used
            data_slice = (
                slice(
                    origin[0] - fh.start_idx + sync_offset,
                    origin[0] - fh.start_idx + shape[0] + sync_offset
                ),
            ) + tuple([
                slice(o, (o + s))
                for (o, s) in zip(origin[1:], shape[1:])
            ])
            data = memmap[data_slice]
            yield DataTile(
                data,
                tile_slice=tile_slice,
                scheme_idx=scheme_idx,
            )

    def get_read_and_decode(self, decode):
        key = (decode, "mmap")
        if key in _r_n_d_cache:
            return _r_n_d_cache[key]
        r_n_d = _make_mmap_reader_and_decoder(decode=decode)
        _r_n_d_cache[key] = r_n_d
        return r_n_d

    def _get_tiles_w_copy(
        self, tiling_scheme, fileset, read_ranges, read_dtype, native_dtype,
        decoder=None, corrections=None,
    ):
        if decoder is None:
            decoder = DtypeConversionDecoder()
        decode = decoder.get_decode(
            native_dtype=np.dtype(native_dtype),
            read_dtype=np.dtype(read_dtype),
        )
        r_n_d = self._r_n_d = self.get_read_and_decode(decode)

        native_dtype = decoder.get_native_dtype(native_dtype, read_dtype)
        mmaps = List()
        for fh in fileset:
            mmaps.append(np.frombuffer(fh.raw_mmap(), dtype=np.uint8))

        sig_dims = tiling_scheme.shape.sig.dims
        ds_shape = np.array(tiling_scheme.dataset_shape)

        largest_slice = sorted([
            (np.prod(s_.shape), s_)
            for _, s_ in tiling_scheme.slices
        ], key=lambda x: x[0], reverse=True)[0][1]

        buf_shape = (tiling_scheme.depth,) + tuple(largest_slice.shape)
        need_clear = decoder.do_clear()

        with self._buffer_pool.empty(buf_shape, dtype=read_dtype) as out_decoded:
            out_decoded = out_decoded.reshape((-1,))
            slices = read_ranges[0]
            shape_prods = np.prod(slices[..., 1, :], axis=1)
            ranges = read_ranges[1]
            scheme_indices = read_ranges[2]
            for idx in range(slices.shape[0]):
                origin = slices[idx, 0]
                shape = slices[idx, 1]
                tile_slice = Slice(
                    origin=origin,
                    shape=Shape(shape, sig_dims=sig_dims)
                )
                tile_ranges = ranges[idx]
                scheme_idx = scheme_indices[idx]
                # if idx < slices.shape[0] - 1:
                #     self._prefetch_for_tile(fileset, ranges[idx + 1])
                #     pass
                out_cut = out_decoded[:shape_prods[idx]].reshape((shape[0], -1))
                data = r_n_d(
                    idx,
                    mmaps, sig_dims, tile_ranges,
                    out_cut, native_dtype, do_zero=need_clear,
                    origin=origin, shape=shape, ds_shape=ds_shape,
                )
                data = data.reshape(shape)
                self.preprocess(data, tile_slice, corrections)
                yield DataTile(
                    data,
                    tile_slice=tile_slice,
                    scheme_idx=scheme_idx,
                )

    def get_tiles(
        self, tiling_scheme, fileset, read_ranges, roi, native_dtype, read_dtype, decoder,
        sync_offset, corrections,
    ):
        # TODO: how would compression work?
        # TODO: sparse input data? COO format? fill rate? → own pipeline! → later!
        # strategy: assume low (20%?) fill rate, read whole partition and apply ROI in-memory
        #           partitioning when opening the dataset, or by having one file per partition

        with fileset:
            if self._enable_readahead:
                self._set_readahead_hints(roi, fileset)
            if not self.need_copy(
                decoder=decoder,
                tiling_scheme=tiling_scheme,
                fileset=fileset,
                roi=roi,
                native_dtype=native_dtype,
                read_dtype=read_dtype,
                sync_offset=sync_offset,
                corrections=corrections,
            ):
                yield from self._get_tiles_straight(
                    tiling_scheme, fileset, read_ranges, sync_offset,
                )
            else:
                yield from self._get_tiles_w_copy(
                    tiling_scheme=tiling_scheme,
                    fileset=fileset,
                    read_ranges=read_ranges,
                    read_dtype=read_dtype,
                    native_dtype=native_dtype,
                    decoder=decoder,
                    corrections=corrections,
                )

    def _prefetch_for_tile(self, fileset, tile_ranges):
        prefr = _get_prefetch_ranges(len(fileset), tile_ranges)
        prefr = prefr[~np.all(prefr == 0, axis=1)]
        for mi, ma, fidx in prefr:
            f = fileset[fidx]
            os.posix_fadvise(
                f.fileno(),
                mi,
                ma - mi,
                os.POSIX_FADV_WILLNEED
            )

    def _set_readahead_hints(self, roi, fileset):
        if not hasattr(os, 'posix_fadvise'):
            return
        if any([f.fileno() is None
                for f in fileset]):
            return
        for f in fileset:
            os.posix_fadvise(
                f.fileno(),
                0,
                0,
                os.POSIX_FADV_WILLNEED
            )
Exemple #4
0
class BufferedBackendImpl(IOBackendImpl):
    def __init__(self, max_buffer_size, direct_io=False):
        super().__init__()
        self._max_buffer_size = max_buffer_size
        self._direct_io = direct_io
        self._buffer_pool = BufferPool()

    @contextlib.contextmanager
    def open_files(self, fileset: FileSet):
        cls: Type[BufferedFile]
        if self._direct_io:
            cls = DirectBufferedFile
        else:
            cls = BufferedFile
        files = [
            cls(path=f.path, desc=f).open()
            for f in fileset
        ]
        yield files
        for f in files:
            f.close()

    def need_copy(
        self, decoder, roi, native_dtype, read_dtype, tiling_scheme=None, fileset=None,
        sync_offset=0, corrections=None,
    ):
        return True  # we always copy in this backend

    def get_read_and_decode(self, decode):
        key = (decode, "read")
        if key in _r_n_d_cache:
            return _r_n_d_cache[key]
        r_n_d = _make_buffered_reader_and_decoder(decode=decode)
        _r_n_d_cache[key] = r_n_d
        return r_n_d

    def get_max_io_size(self):
        return self._max_buffer_size

    def _get_tiles_by_block(
        self, tiling_scheme, open_files, read_ranges, read_dtype, native_dtype, decoder=None,
        corrections=None, sync_offset=0,
    ):
        if decoder is None:
            decoder = DtypeConversionDecoder()
        decode = decoder.get_decode(
            native_dtype=np.dtype(native_dtype),
            read_dtype=np.dtype(read_dtype),
        )
        r_n_d = self._r_n_d = self.get_read_and_decode(decode)

        native_dtype = decoder.get_native_dtype(native_dtype, read_dtype)

        sig_dims = tiling_scheme.shape.sig.dims
        ds_shape = np.array(tiling_scheme.dataset_shape)

        largest_slice = sorted((
            (prod(s_.shape), s_)
            for _, s_ in tiling_scheme.slices
        ), key=lambda x: x[0], reverse=True)[0][1]

        buf_shape = (tiling_scheme.depth,) + tuple(largest_slice.shape)

        need_clear = decoder.do_clear()

        slices = read_ranges[0]
        # Use NumPy prod for multidimensional array and axis parameter
        shape_prods = np.prod(slices[..., 1, :], axis=1, dtype=np.int64)
        ranges = read_ranges[1]
        scheme_indices = read_ranges[2]
        tile_block_size = len(tiling_scheme)

        with self._buffer_pool.empty(buf_shape, dtype=read_dtype) as out_decoded:
            out_decoded = out_decoded.reshape((-1,))
            for block_idx in range(0, slices.shape[0], tile_block_size):
                block_ranges = ranges[block_idx:block_idx + tile_block_size]

                fill_factor, req_buf_size, min_per_file, max_per_file = block_get_min_fill_factor(
                    block_ranges
                )
                # TODO: if it makes sense, implement sparse variant
                # if req_buf_size > self._max_buffer_size or fill_factor < self._sparse_threshold:
                yield from self._read_block_dense(
                    block_idx, tile_block_size, min_per_file, max_per_file, open_files,
                    slices, ranges, scheme_indices, shape_prods, out_decoded, r_n_d,
                    sig_dims, ds_shape, need_clear, native_dtype, corrections,
                )

    def _read_block_dense(
        self, block_idx, tile_block_size, min_per_file, max_per_file, open_files,
        slices, ranges, scheme_indices, shape_prods, out_decoded, r_n_d,
        sig_dims, ds_shape, need_clear, native_dtype, corrections,
    ):
        """
        Reads a block of tiles, starting at `block_idx`, having a size of
        `tile_block_size` read range entries.
        """
        # phase 1: read
        buffers = Dict()

        # this list manages the lifetime of the ManagedBuffer instances;
        # after `buf_ref` goes out of scope, the buffers are returned to
        # the buffer pool, so make sure that this matches with the usage
        # of the buffers!
        buf_ref = []
        for fileno in min_per_file.keys():
            fh = open_files[fileno]
            # add align_to to allow for alignment cut:
            align_to = fh.get_blocksize()
            read_size = max_per_file[fileno] - min_per_file[fileno] + align_to
            # ManagedBuffer gives us memory in 4k blocks, so the size is 4k aligned
            mb = ManagedBuffer(self._buffer_pool, read_size, alignment=fh.get_blocksize())
            arr = np.frombuffer(mb.buf, dtype=np.uint8)
            buf_ref.append(mb)
            seek_pos = min_per_file[fileno]
            alignment = 0
            # seek_pos needs to be aligned to 4k block size, too:
            if seek_pos % align_to != 0:
                alignment = seek_pos % align_to
                seek_pos = align_to * (seek_pos // align_to)
            fh.seek(seek_pos)
            read_result = fh.readinto(arr)
            # read may be truncated, if the buffer is larger than the file; we
            # truncate the buffer, too, to make sure we don't use any
            # uninitialized values. Also cut off `alignment` bytes at the beginning,
            # which were read to make O_DIRECT happy:
            buffers[fileno] = read_result[alignment:]

        # phase 2: decode tiles from the data that was read
        for idx in range(block_idx, block_idx + tile_block_size):
            origin = slices[idx, 0]
            shape = slices[idx, 1]
            tile_ranges = ranges[idx]
            scheme_idx = scheme_indices[idx]
            out_cut = out_decoded[:shape_prods[idx]].reshape((shape[0], -1))

            data = r_n_d(
                idx,
                buffers, sig_dims, tile_ranges,
                out_cut, native_dtype, do_zero=need_clear,
                origin=origin, shape=shape, ds_shape=ds_shape,
                offsets=min_per_file,
            )
            tile_slice = Slice(
                origin=origin,
                shape=Shape(shape, sig_dims=sig_dims)
            )
            data = data.reshape(shape)
            self.preprocess(data, tile_slice, corrections)
            yield DataTile(
                data,
                tile_slice=tile_slice,
                scheme_idx=scheme_idx,
            )

    def get_tiles(
        self, tiling_scheme, fileset, read_ranges, roi, native_dtype, read_dtype, decoder,
        sync_offset, corrections,
    ):
        with self.open_files(fileset) as open_files:
            yield from self._get_tiles_by_block(
                tiling_scheme=tiling_scheme,
                open_files=open_files,
                read_ranges=read_ranges,
                read_dtype=read_dtype,
                native_dtype=native_dtype,
                decoder=decoder,
                corrections=corrections,
                sync_offset=sync_offset,
            )