def main(args, temp_path, pool):
    input_image = orig_input_image = args.input_image
    output_path = args.output_path
    if roi['param_all'] in args.roi_names:
        labels = list(roi['label_names'])
    else:
        roi_dict = dict(zip(roi['param_names'], roi['label_names']))
        labels = [roi_dict[el] for el in args.roi_names]

    if args.warp:
        warp_path = args.warp
    else:
        # TODO remove this as the default behavior, instead do ANTS?
        head, tail = os.path.split(input_image)
        tail = tail.replace('.nii', '').replace('.gz', '')  #split('.', 1)[0]
        warp_path = os.path.join(temp_path, tail)

    t = time.time()
    # FSL automatically converts .nii to .nii.gz
    sanitized_image = os.path.join(
        temp_path,
        os.path.basename(input_image) +
        ('.gz' if input_image.endswith('.nii') else ''))
    print '--- Reorienting image. --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
    if not os.path.exists(sanitized_image):
        input_image = sanitize_input(input_image, sanitized_image,
                                     parallel_command)
        if args.right:
            print '--- Flipping along L-R. --- Elapsed: %s' % timedelta(
                seconds=time.time() - t)
            flip_lr(input_image, input_image, parallel_command)
        print '--- Correcting bias. --- Elapsed: %s' % timedelta(
            seconds=time.time() - t)
        bias_correct(input_image, input_image, **exec_options)
    else:
        print 'Skipped, using %s' % sanitized_image
        input_image = sanitized_image
    print '--- Initial processing completed --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
Exemple #2
0
def main(args, temp_path, pool):
    input_image = orig_input_image = args.input_image
    output_path = args.output_path
    if roi['param_all'] in args.roi_names:
        labels = list(roi['label_names'])
    else:
        roi_dict = dict(zip(roi['param_names'], roi['label_names']))
        labels = [roi_dict[el] for el in args.roi_names]

    if args.warp:
        warp_path = args.warp
    else:
        # TODO remove this as the default behavior, instead do ANTS?
        head, tail = os.path.split(input_image)
        tail = tail.replace('.nii', '').replace('.gz', '') #split('.', 1)[0]
        warp_path = os.path.join(temp_path, tail)

    t = time.time()
    # FSL automatically converts .nii to .nii.gz
    sanitized_image = os.path.join(temp_path, os.path.basename(input_image) + ('.gz' if input_image.endswith('.nii') else ''))
    print '--- Reorienting image. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    if not os.path.exists(sanitized_image):
        input_image = sanitize_input(input_image, sanitized_image, parallel_command)
        if args.right:
            print '--- Flipping along L-R. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
            flip_lr(input_image, input_image, parallel_command)
        print '--- Correcting bias. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
        bias_correct(input_image, input_image, **exec_options)
    else:
        print 'Skipped, using %s' % sanitized_image
        input_image = sanitized_image
    print '--- Registering to mean brain template. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    if args.forcereg or not check_warps(warp_path):
        if args.warp:
            print 'Saving output as %s' % warp_path
        else:
            warp_path = os.path.join(temp_path, tail)
            print 'Saving output to temporary path.'
        ants_nonlinear_registration(template, input_image, warp_path, **exec_options)
    else:
        print 'Skipped, using %sInverseWarp.nii.gz and %sAffine.txt' % (warp_path, warp_path)
    print '--- Warping prior labels and images. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    # TODO should probably use output from warp_atlas_subject instead of hard coding paths in create_atlas
    # TODO make this more parallel
    warped_labels = pool.map(partial(
        warp_atlas_subject,
        path=prior_path,
        # TODO cleanup this hack to always have whole thalamus so can estimate mask
        labels=set(labels + ['1-THALAMUS']),
        input_image=input_image,
        input_transform_prefix=warp_path,
        output_path=temp_path,
        exec_options=exec_options,
    ), subjects)
    warped_labels = {label: {subj: d[label] for subj, d in zip(subjects, warped_labels)} for label in warped_labels[0]}
    # print '--- Forming subject-registered atlases. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    # atlases = pool.map(partial(create_atlas, path=temp_path, subjects=subjects, target='', echo=exec_options['echo']),
    #     [{'label': label, 'output_atlas': os.path.join(temp_path, label+'_atlas.nii.gz')} for label in warped_labels])
    # atlases = dict(zip(warped_labels, zip(*atlases)[0]))
    # atlas_image = atlases['WMnMPRAGE_bias_corr']
    atlas_images = warped_labels['WMnMPRAGE_bias_corr'].values()
    print '--- Performing label fusion. --- Elapsed: %s' % timedelta(seconds=time.time() - t)
    # FIXME use whole-brain template registration optimized parameters instead, these are from crop pipeline
    optimal_picsl = optimal['PICSL']
    # for k, v in warped_labels.iteritems():
    #     print k, v
    # for label in labels:
    #     print optimal_picsl[label]
    if args.jointfusion:
        pool.map(partial(label_fusion_picsl, input_image, atlas_images),
            [dict(
                atlas_labels=warped_labels[label].values(),
                output_label=os.path.join(temp_path, label+'.nii.gz'),
                rp=optimal_picsl[label]['rp'],
                rs=optimal_picsl[label]['rs'],
                beta=optimal_picsl[label]['beta'],
                **exec_options
            ) for label in labels])
    else:
        # Estimate mask to restrict computation
        mask = os.path.join(temp_path, 'mask.nii.gz')
        check_run(
            mask,
            conservative_mask,
            warped_labels['1-THALAMUS'].values(),
            mask,
            dilation=10,
        )
        pool.map(partial(label_fusion_picsl_ants, input_image, atlas_images),
            [dict(
                atlas_labels=warped_labels[label].values(),
                output_label=os.path.join(temp_path, label + '.nii.gz'),
                rp=optimal_picsl[label]['rp'],
                rs=optimal_picsl[label]['rs'],
                beta=optimal_picsl[label]['beta'],
                mask=mask,
                **exec_options
            ) for label in labels])
    # STEPS
    # pool_small.map(partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo']),
    #     [{
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } for label in labels]
    # )
    # for label in labels:
    #     print {
    #         'label': label,
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     }
    #     partial_fusion = partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo'])
    #     label_fusion_args = {
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } 
    #     partial_fusion(**label_fusion_args)

    files = [(os.path.join(temp_path, label + '.nii.gz'), os.path.join(output_path, label + '.nii.gz')) for label in labels]
    if args.right:
        pool.map(flip_lr, files)
        files = [(os.path.join(output_path, label + '.nii.gz'), os.path.join(output_path, label + '.nii.gz')) for label in labels]
    # Resort output to original ordering
    pool.map(parallel_command,
        ['%s %s %s %s' % (os.path.join(this_path, 'swapdimlike.py'), in_file, orig_input_image, out_file) for in_file, out_file in files])
    print '--- Finished --- Elapsed: %s' % timedelta(seconds=time.time() - t)
Exemple #3
0
def main(args, temp_path, pool):
    input_image = orig_input_image = args.input_image
    output_path = args.output_path
    if roi['param_all'] in args.roi_names:
        labels = list(roi['label_names'])
    else:
        roi_dict = dict(zip(roi['param_names'], roi['label_names']))
        labels = [roi_dict[el] for el in args.roi_names]

    if args.warp:
        warp_path = args.warp
    else:
        # TODO remove this as the default behavior, instead do ANTS?
        head, tail = os.path.split(input_image)
        tail = tail.replace('.nii', '').replace('.gz', '')  #split('.', 1)[0]
        warp_path = os.path.join(temp_path, tail)

    t = time.time()
    # FSL automatically converts .nii to .nii.gz
    sanitized_image = os.path.join(
        temp_path,
        os.path.basename(input_image) +
        ('.gz' if input_image.endswith('.nii') else ''))
    print '--- Reorienting image. --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
    if not os.path.exists(sanitized_image):
        input_image = sanitize_input(input_image, sanitized_image,
                                     parallel_command)
        if args.right:
            print '--- Flipping along L-R. --- Elapsed: %s' % timedelta(
                seconds=time.time() - t)
            flip_lr(input_image, input_image, parallel_command)
        print '--- Correcting bias. --- Elapsed: %s' % timedelta(
            seconds=time.time() - t)
        bias_correct(input_image, input_image, **exec_options)
    else:
        print 'Skipped, using %s' % sanitized_image
        input_image = sanitized_image

    print '--- Estimating thalamus crop. --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
    # TODO don't use global var pool_small
    crop_mask, affines = estimate_crop(subjects,
                                       input_image,
                                       output_path=temp_path,
                                       pool=pool_small)
    print '--- Cropping thalamus from target and priors. --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
    # TODO allow padding to be adjustable
    target, priors, mask = crop_target_and_priors(input_image,
                                                  crop_mask,
                                                  affines,
                                                  output_path=temp_path,
                                                  pool=pool)
    print '--- Warping prior labels and images. --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
    # TODO should probably use output from warp_atlas_subject instead of hard coding paths in create_atlas
    warped_labels = warp_priors(target,
                                priors,
                                mask,
                                labels,
                                output_path=temp_path,
                                pool=pool)
    print '--- Performing label fusion. --- Elapsed: %s' % timedelta(
        seconds=time.time() - t)
    atlas_images = warped_labels['WMnMPRAGE_bias_corr'].values()
    # FIXME use whole-brain template registration optimized parameters instead, these are from crop pipeline
    optimal_picsl = optimal['PICSL']
    # # for k, v in warped_labels.iteritems():
    # #     print k, v
    # # for label in labels:
    # #     print optimal_picsl[label]
    if args.jointfusion:
        pool.map(partial(label_fusion_picsl, target, atlas_images), [
            dict(atlas_labels=warped_labels[label].values(),
                 output_label=os.path.join(temp_path, label + '.nii.gz'),
                 rp=optimal_picsl[label]['rp'],
                 rs=optimal_picsl[label]['rs'],
                 beta=optimal_picsl[label]['beta'],
                 **exec_options) for label in labels
        ])
    else:
        # Estimate mask to restrict computation
        mask = os.path.join(temp_path, 'mask.nii.gz')
        check_run(
            mask,
            conservative_mask,
            warped_labels['1-THALAMUS'].values(),
            mask,
            dilation=10,
        )
        pool.map(partial(label_fusion_picsl_ants, target, atlas_images), [
            dict(atlas_labels=warped_labels[label].values(),
                 output_label=os.path.join(temp_path, label + '.nii.gz'),
                 rp=optimal_picsl[label]['rp'],
                 rs=optimal_picsl[label]['rs'],
                 beta=optimal_picsl[label]['beta'],
                 mask=mask,
                 **exec_options) for label in labels
        ])
    #STEPS
    # pool_small.map(partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo']),
    #     [{
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } for label in labels]
    # )
    # for label in labels:
    #     print {
    #         'label': label,
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     }
    #     partial_fusion = partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo'])
    #     label_fusion_args = {
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     }
    #     partial_fusion(**label_fusion_args)
    #
    files = [(os.path.join(temp_path, label + '.nii.gz'),
              os.path.join(output_path, label + '.nii.gz'))
             for label in labels]
    if args.right:
        pool.map(flip_lr, files)
        files = [(os.path.join(output_path, label + '.nii.gz'),
                  os.path.join(output_path, label + '.nii.gz'))
                 for label in labels]
    # Resort output to original ordering
    pool.map(parallel_command, [
        '%s %s %s %s' % (os.path.join(
            this_path, 'swapdimlike.py'), in_file, orig_input_image, out_file)
        for in_file, out_file in files
    ])
    print '--- Finished --- Elapsed: %s' % timedelta(seconds=time.time() - t)
Exemple #4
0
def main(args, temp_path, pool):
    input_image = orig_input_image = args.input_image

    # assigning default value of mask
    mask = mask_93

    #setting up output path
    if args.output_path:
        output_path = args.output_path
    else:
        output_path = os.path.dirname(orig_input_image)

    #setting up the ROIs
    if roi['param_all'] in args.roi_names:
        labels = list(roi['label_names'])
    else:
        roi_dict = dict(zip(roi['param_names'], roi['label_names']))
        labels = [roi_dict[el] for el in args.roi_names]

    #setting up the template
    if args.algorithm == "v2":
        if args.template is not None and args.mask is not None:
            template = args.template
            mask = args.mask
            print "Custom template and mask"
        elif args.template is not None and args.mask is None:
            sys.exit("!!!!!!! Both template and mask need to be specified simultaneously and they need to be of the same size !!!!!!!")
        elif args.template is None and args.mask is not None:
            sys.exit("!!!!!!! Both template and mask need to be specified simultaneously and they need to be of the same size !!!!!!!")
        else:
            template = template_93
            mask = mask_93
            print "Algorithm is v2"
    elif args.algorithm == "v1":
        sys.exit("!!!!!!! v1 algorithm not yet implemented !!!!!!!")
    elif args.algorithm == "v0":
        template = orig_template
        print "Template is origtemplate.nii.gz"
    else:
        sys.exit("!!!!!!! Algorithm incorrectly specified !!!!!!!")

    # print 'Template being used is'
    # print os.path.abspath(template)


    # TODO prevent both jointfusion and majority voting being set
	# if args.jointfusion is None:
		# print "args.jointfusion has been set (value is %s)" % args.jointfusion
		# if args.majorityvoting is None:
			# print "args.majorityvoting has been set (value is %s)" % args.majorityvoting
			# sys.exit("!!!!!!! Only one label fusion can be selected at any time (default is antsJointFusion) !!!!!!!")
	
    if args.warp:
        warp_path = args.warp
    else:
        # TODO remove this as the default behavior, instead do ANTS?
        head, tail = os.path.split(input_image)
        tail = tail.replace('.nii', '').replace('.gz', '') #split('.', 1)[0]
        warp_path = os.path.join(temp_path, tail)

    t = time.time()

    if args.algorithm == "v2":
        # Crop the input
        # Affine registering template to input
        ants_rigid_registration(orig_input_image, orig_template)
        print "Completed a quick rigid registration of input and full template"
        mask_input = os.path.join(os.path.dirname(orig_input_image), 'mask_inp.nii.gz')
        # Transform mask from template space to input space
        ants_ApplyTransforms(mask, orig_input_image, mask_input)
        #ants_WarpImageMultiTransform(mask, mask_input, orig_input_image)
        print "Completed transforming the mask from template space to input space"
        file_name = os.path.basename(orig_input_image)
        index_of_dot = file_name.index('.')
        file_name_without_extension = file_name[:index_of_dot]
        input_image = os.path.join(os.path.dirname(orig_input_image), 'crop_'+file_name_without_extension+'.nii.gz')
        # Cropping input using this mask
        parallel_command(crop_by_mask(orig_input_image, input_image, mask_input))
        print 'Completed cropping the input. Elapsed: %s' % timedelta(seconds=time.time()-t)


    # FSL automatically converts .nii to .nii.gz
    sanitized_image = os.path.join(temp_path, os.path.basename(input_image) + ('.gz' if input_image.endswith('.nii') else ''))
    print '--- Reorienting image. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    if not os.path.exists(sanitized_image):
        input_image = sanitize_input(input_image, sanitized_image, parallel_command)
        if args.right:
            print '--- Flipping along L-R. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
            flip_lr(input_image, input_image, parallel_command)
        print '--- Correcting bias. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
        bias_correct(input_image, input_image, **exec_options)
    else:
        print 'Skipped, using %s' % sanitized_image
        input_image = sanitized_image


    print '--- Registering to mean brain template. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    if args.forcereg or not check_warps(warp_path):
        if args.warp:
            print 'Saving output as %s' % warp_path
        else:
            warp_path = os.path.join(temp_path, tail)
            print 'Saving output to temporary path.'
        # ants_nonlinear_registration(template, input_image, warp_path, **exec_options)
        print 'temppath %s warppath %s input_image %s' % (temp_path, warp_path, input_image)

        if args.algorithm == "v2":
            ants_new_nonlinear_registration(template, input_image, warp_path, **exec_options)
        else:
            ants_v0_nonlinear_registration(template, input_image, warp_path, **exec_options)

    else:
        print 'Skipped, using %sInverseWarp.nii.gz and %sAffine.txt' % (warp_path, warp_path)

    # generating the warped output
    registered = os.path.join(temp_path, 'registered.nii.gz')
    cmd = 'WarpImageMultiTransform 3 %s %s -R %s %s1Warp.nii.gz %s0GenericAffine.mat' % (input_image, registered, template, warp_path, warp_path)
    parallel_command(cmd)

    print '--- Warping prior labels and images. --- Elapsed: %s' % timedelta(seconds=time.time() - t)
    # TODO should probably use output from warp_atlas_subject instead of hard coding paths in create_atlas
    # TODO make this more parallel
    warped_labels = pool.map(partial(
        warp_atlas_subject,
        path=prior_path,
        # TODO cleanup this hack to always have whole thalamus so can estimate mask
        labels=set(labels + ['1-THALAMUS']),
        input_image=input_image,
        input_transform_prefix=warp_path,
        output_path=temp_path,
        exec_options=exec_options,
    ), subjects)
    warped_labels = {label: {subj: d[label] for subj, d in zip(subjects, warped_labels)} for label in warped_labels[0]}
    # # print '--- Forming subject-registered atlases. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    # atlases = pool.map(partial(create_atlas, path=temp_path, subjects=subjects, target='', echo=exec_options['echo']),
    # [{'label': label, 'output_atlas': os.path.join(temp_path, label+'_atlas.nii.gz')} for label in warped_labels])
    # atlases = dict(zip(warped_labels, zip(*atlases)[0]))
    # atlas_image = atlases['WMnMPRAGE_bias_corr']
    atlas_images = warped_labels['WMnMPRAGE_bias_corr'].values()

    print '--- Performing label fusion. --- Elapsed: %s' % timedelta(seconds=time.time() - t)
    # FIXME use whole-brain template registration optimized parameters instead, these are from crop pipeline
    optimal_picsl = optimal['PICSL']
    # for k, v in warped_labels.iteritems():
    #     print k, v
    # for label in labels:
    #     print optimal_picsl[label]
    if args.jointfusion:
        pool.map(partial(label_fusion_picsl, input_image, atlas_images),
                 [dict(
                     atlas_labels=warped_labels[label].values(),
                     output_label=os.path.join(temp_path, label + '.nii.gz'),
                     rp=optimal_picsl[label]['rp'],
                     rs=optimal_picsl[label]['rs'],
                     beta=optimal_picsl[label]['beta'],
                     **exec_options
                 ) for label in labels])
    elif args.majorityvoting:
        pool.map(partial(label_fusion_majority),
                 [dict(
                     atlas_labels=warped_labels[label].values(),
                     output_label=os.path.join(temp_path, label + '.nii.gz'),
                     **exec_options
                 ) for label in labels])
    else:
        # Estimate mask to restrict computation
        mask = os.path.join(temp_path, 'mask.nii.gz')
        check_run(
            mask,
            conservative_mask,
            warped_labels['1-THALAMUS'].values(),
            mask,
            dilation=10,
        )
        pool.map(partial(label_fusion_picsl_ants, input_image, atlas_images),
                 [dict(
                     atlas_labels=warped_labels[label].values(),
                     output_label=os.path.join(temp_path, label + '.nii.gz'),
                     rp=optimal_picsl[label]['rp'],
                     rs=optimal_picsl[label]['rs'],
                     beta=optimal_picsl[label]['beta'],
                     mask=mask,
                     **exec_options
                 ) for label in labels])
    # STEPS
    # pool_small.map(partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo']),
    #     [{
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } for label in labels]
    # )
    # for label in labels:
    #     print {
    #         'label': label,
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     }
    #     partial_fusion = partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo'])
    #     label_fusion_args = {
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } 
    #     partial_fusion(**label_fusion_args)

    files = [(os.path.join(temp_path, label + '.nii.gz'), os.path.join(output_path, label + '.nii.gz')) for label in labels]
    if args.right:
        pool.map(flip_lr, files)
        files = [(os.path.join(output_path, label + '.nii.gz'), os.path.join(output_path, label + '.nii.gz')) for label in labels]
    # Resort output to original ordering
    pool.map(parallel_command,
        ['%s %s %s %s' % (os.path.join(this_path, 'swapdimlike.py'), in_file, orig_input_image, out_file) for in_file, out_file in files])
    
    # get the vlp file path for splitting 
    vlp_file = os.path.join(output_path, '6-VLP.nii.gz')
                 
    # Re-orient to standard space - LR PA IS format
    san_vlp_file = os.path.join(output_path, 'san_6-VLP.nii.gz')
    input_image1 = sanitize_input(vlp_file, san_vlp_file, parallel_command)
    
    # get the sanitized vlp for processing
    input_nii = nibabel.load(input_image1)
    data = input_nii.get_data()
    hdr = input_nii.get_header()
    affine = input_nii.get_affine()    
    
    # Coronal axis for RL PA IS orientation
    vlps = split_roi(data, None, 2)
    for fname, sub_vlp in zip(['6_VLPv.nii.gz', '6_VLPd.nii.gz'], vlps):
        output_nii = nibabel.Nifti1Image(sub_vlp, affine, hdr)
        output_nii.to_filename(os.path.join(os.path.dirname(out_file), fname))
       
    print '--- Finished --- Elapsed: %s' % timedelta(seconds=time.time() - t)
Exemple #5
0
def main(args, temp_path, pool):
    input_image = orig_input_image = args.input_image
    output_path = args.output_path
    if roi['param_all'] in args.roi_names:
        labels = list(roi['label_names'])
    else:
        roi_dict = dict(zip(roi['param_names'], roi['label_names']))
        labels = [roi_dict[el] for el in args.roi_names]

    if args.warp:
        warp_path = args.warp
    else:
        # TODO remove this as the default behavior, instead do ANTS?
        head, tail = os.path.split(input_image)
        tail = tail.replace('.nii', '').replace('.gz', '') #split('.', 1)[0]
        warp_path = os.path.join(temp_path, tail)

    t = time.time()
    # FSL automatically converts .nii to .nii.gz
    sanitized_image = os.path.join(temp_path, os.path.basename(input_image) + ('.gz' if input_image.endswith('.nii') else ''))
    print '--- Reorienting image. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    if not os.path.exists(sanitized_image):
        input_image = sanitize_input(input_image, sanitized_image, parallel_command)
        if args.right:
            print '--- Flipping along L-R. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
            flip_lr(input_image, input_image, parallel_command)
        print '--- Correcting bias. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
        bias_correct(input_image, input_image, **exec_options)
    else:
        print 'Skipped, using %s' % sanitized_image
        input_image = sanitized_image
    print '--- Registering to mean brain template. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    if args.forcereg or not check_warps(warp_path):
        if args.warp:
            print 'Saving output as %s' % warp_path
        else:
            warp_path = os.path.join(temp_path, tail)
            print 'Saving output to temporary path.'
        ants_nonlinear_registration(template, input_image, warp_path, **exec_options)
    else:
        print 'Skipped, using %sInverseWarp.nii.gz and %sAffine.txt' % (warp_path, warp_path)
    print '--- Warping prior labels and images. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    # TODO should probably use output from warp_atlas_subject instead of hard coding paths in create_atlas
    # TODO make this more parallel
    warped_labels = pool.map(partial(
        warp_atlas_subject,
        path=prior_path,
        # TODO cleanup this hack to always have whole thalamus so can estimate mask
        labels=set(labels + ['1-THALAMUS']),
        input_image=input_image,
        input_transform_prefix=warp_path,
        output_path=temp_path,
        exec_options=exec_options,
    ), subjects)
    warped_labels = {label: {subj: d[label] for subj, d in zip(subjects, warped_labels)} for label in warped_labels[0]}
    # print '--- Forming subject-registered atlases. --- Elapsed: %s' % timedelta(seconds=time.time()-t)
    # atlases = pool.map(partial(create_atlas, path=temp_path, subjects=subjects, target='', echo=exec_options['echo']),
    #     [{'label': label, 'output_atlas': os.path.join(temp_path, label+'_atlas.nii.gz')} for label in warped_labels])
    # atlases = dict(zip(warped_labels, zip(*atlases)[0]))
    # atlas_image = atlases['WMnMPRAGE_bias_corr']
    atlas_images = warped_labels['WMnMPRAGE_bias_corr'].values()
    print '--- Performing label fusion. --- Elapsed: %s' % timedelta(seconds=time.time() - t)
    # FIXME use whole-brain template registration optimized parameters instead, these are from crop pipeline
    optimal_picsl = optimal['PICSL']
    # for k, v in warped_labels.iteritems():
    #     print k, v
    # for label in labels:
    #     print optimal_picsl[label]
    if args.jointfusion:
        pool.map(partial(label_fusion_picsl, input_image, atlas_images),
            [dict(
                atlas_labels=warped_labels[label].values(),
                output_label=os.path.join(temp_path, label+'.nii.gz'),
                rp=optimal_picsl[label]['rp'],
                rs=optimal_picsl[label]['rs'],
                beta=optimal_picsl[label]['beta'],
                **exec_options
            ) for label in labels])
    else:
        # Estimate mask to restrict computation
        mask = os.path.join(temp_path, 'mask.nii.gz')
        check_run(
            mask,
            conservative_mask,
            warped_labels['1-THALAMUS'].values(),
            mask,
            dilation=10,
        )
        pool.map(partial(label_fusion_picsl_ants, input_image, atlas_images),
            [dict(
                atlas_labels=warped_labels[label].values(),
                output_label=os.path.join(temp_path, label + '.nii.gz'),
                rp=optimal_picsl[label]['rp'],
                rs=optimal_picsl[label]['rs'],
                beta=optimal_picsl[label]['beta'],
                mask=mask,
                **exec_options
            ) for label in labels])
    # STEPS
    # pool_small.map(partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo']),
    #     [{
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } for label in labels]
    # )
    # for label in labels:
    #     print {
    #         'label': label,
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     }
    #     partial_fusion = partial(label_fusion, input_image=input_image, image_atlas=atlases['WMnMPRAGE_bias_corr'], echo=exec_options['echo'])
    #     label_fusion_args = {
    #         'label_atlas': atlases[label],
    #         'output_label': os.path.join(output_path, label+'.nii.gz'),
    #         'sigma': optimal_steps[label]['steps_sigma'],
    #         'X': optimal_steps[label]['steps_X'],
    #         'mrf': optimal_steps[label]['steps_mrf'],
    #     } 
    #     partial_fusion(**label_fusion_args)

    files = [(os.path.join(temp_path, label + '.nii.gz'), os.path.join(output_path, label + '.nii.gz')) for label in labels]
    if args.right:
        pool.map(flip_lr, files)
        files = [(os.path.join(output_path, label + '.nii.gz'), os.path.join(output_path, label + '.nii.gz')) for label in labels]
    # Resort output to original ordering
    pool.map(parallel_command,
        ['%s %s %s %s' % (os.path.join(this_path, 'swapdimlike.py'), in_file, orig_input_image, out_file) for in_file, out_file in files])
    print '--- Finished --- Elapsed: %s' % timedelta(seconds=time.time() - t)