forceManualFlag = True elif o in ('-n', '--negative'): includeNegativeGrowthFlag = True except: print 'ERROR: only flags admitted are -f [--force-manual] and -n [--negative].' sys.exit() runningFlags=[forceManualFlag,includeNegativeGrowthFlag] # 1. data reading data300 = library.dataReader('data/300ppmSetsLight.v2.txt') data1000 = library.dataReader('data/1000ppmSetsLight.v2.txt') # 2. calculating the max growth rates print 'fitting data for 300 pppm...' maxGrowthRates300, uvValues300, growthLag300, recovery300 = library.characteristicParameterFinder(data300,runningFlags) print print 'fitting data for 1,000 pppm...' maxGrowthRates1000, uvValues1000, growthLag1000, recovery1000 = library.characteristicParameterFinder(data1000,runningFlags) # 3. plotting print print 'plotting the figure...' figureFile='results/figureTPT' if runningFlags[0] == True: figureFile=figureFile+'_forcedManual' if runningFlags[1] == True: figureFile=figureFile+'_withNegativeGrowth' figureFile=figureFile+'.pdf'
else: print 'error trying to assign colors. exiting...' sys.exit() return theColor ### MAIN # 1. data reading data300 = library.dataReader('../data/300ppmSet3.txt') data1000 = library.dataReader('../data/1000ppmSet3.txt') # 2. calculating the max growth rates print 'fitting data for 300 pppm...' maxGrowthRates300, uvValues300, growthLag300 = library.characteristicParameterFinder( data300) print print 'fitting data for 1,000 pppm...' maxGrowthRates1000, uvValues1000, growthLag1000 = library.characteristicParameterFinder( data1000) # 3. plotting print print 'plotting the figure...' figureFile = '../results/figureTPT.pdf' # 4.1 plotting for 300 ppms print 'plotting for 300 ppms...' for i in range(len(maxGrowthRates300)): x = growthLag300[i]
forceManualFlag = True elif o in ('-n', '--negative'): includeNegativeGrowthFlag = True except: print 'ERROR: only flags admitted are -f [--force-manual] and -n [--negative].' sys.exit() runningFlags = [forceManualFlag, includeNegativeGrowthFlag] # 1. data reading data300 = library.dataReader('data/300ppmSetsLight.v2.txt') data1000 = library.dataReader('data/1000ppmSetsLight.v2.txt') # 2. calculating the max growth rates print 'fitting data for 300 pppm...' maxGrowthRates300, uvValues300, growthLag300, recovery300 = library.characteristicParameterFinder( data300, runningFlags) print print 'fitting data for 1,000 pppm...' maxGrowthRates1000, uvValues1000, growthLag1000, recovery1000 = library.characteristicParameterFinder( data1000, runningFlags) # 3. plotting print print 'plotting the figure...' figureFile = 'results/figureTPT' if runningFlags[0] == True: figureFile = figureFile + '_forcedManual' if runningFlags[1] == True: figureFile = figureFile + '_withNegativeGrowth' figureFile = figureFile + '.pdf'
### this script plots the niche breadth increase due to max growth and UV import sys, numpy, scipy, matplotlib import matplotlib.pyplot import library ### MAIN # 1. data reading data300=library.dataReader('../data/300ppmSet3.txt') data1000=library.dataReader('../data/1000ppmSet3.txt') # 2. calculating the max growth rates print 'fitting data for 300 pppm...' maxGrowthRates300, uvValues300, growthLag300 = library.characteristicParameterFinder(data300) print print 'fitting data for 1,000 pppm...' maxGrowthRates1000, uvValues1000, growthLag1000 = library.characteristicParameterFinder(data1000) # 3. plotting print print 'plotting the figure...' figureFile = '../results/figureNB.pdf' # 300 matplotlib.pyplot.plot(uvValues300, maxGrowthRates300, 'o', color='blue', mec='blue', mfc='None', ms=8, mew=1) slope, intercept, temp0, temp1, temp2 = scipy.stats.linregress(uvValues300, maxGrowthRates300) y = slope*numpy.array(uvValues300) + intercept matplotlib.pyplot.plot(uvValues300, y, color='blue', lw=1, label='300 ppm')